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Using a monomer potential energy surface to
perform approximate path integral molecular
dynamics simulation of ab initio water at
near-zero added cost

Daniel C. Elton, †*a Michelle Fritzb and Marivi Fernández-Serra *c

It is now established that nuclear quantum motion plays an important role in determining water’s

hydrogen bonding, structure, and dynamics. Such effects are important to include in density functional

theory (DFT) based molecular dynamics simulation of water. The standard way of treating nuclear

quantum effects, path integral molecular dynamics (PIMD), multiplies the number of energy/force

calculations by the number of beads required. In this work we introduce a method whereby PIMD can

be incorporated into a DFT simulation with little extra cost and little loss in accuracy. The method is

based on the many body expansion of the energy and has the benefit of including a monomer level

correction to the DFT energy. Our method calculates intramolecular forces using the highly accurate

monomer potential energy surface developed by Partridge–Schwenke, which is cheap to evaluate.

Intermolecular forces and energies are calculated with DFT only once per timestep using the centroid

positions. We show how our method may be used in conjunction with a multiple time step algorithm

for an additional speedup and how it relates to ring polymer contraction and other schemes that have

been introduced recently to speed up PIMD simulations. We show that our method, which we call

‘‘monomer PIMD’’, correctly captures changes in the structure of water found in a full PIMD simulation

but at much lower computational cost.

There is great interest in being able to accurately simulate
liquid water at the quantum mechanical level.1–4 The most
widely used methodology for this is density functional theory.
However, many density functionals fail to accurately reproduce
all of the key properties of water such as its density, compressi-
bility, and diffusion constant. Moreover, different density
functionals fail in different ways. For instance, PBE creates a
overstructured liquid, while many van der Waals (vdW) func-
tionals create an understructured liquid.5,6 There are none-
theless new meta-GGA functionals such as SCAN7 or empirically
optimized hybrid functionals such as B97M-rV8 which are
producing promising results for liquid water.

Most ab initio techniques are based on the Born–Oppenheimer
approximation and the assumption that nuclear dynamics can be
treated classically. However, over the past two decades a wide
range of studies have demonstrated that this is not a good

assumption for water because the OH stretching mode of water
is very quantum mechanical (zero point temperature Tz = h�o/2kb =
2600 K), and hydrogen nuclei are delocalized, leading to a large
number of non-negligible nuclear quantum effects (NQEs) – for a
recent review, see Ceriotti, et al.9

In the primary isotope effect, the OH distance is observed to
be longer than the OD distance. In the secondary isotope effect,
also called the Ubbelöhde effect, the H-bond donor–acceptor
(oxygen–oxygen) distance R changes upon isotopic substitution.
The magnitude and direction of the change depends on the
strength of the hydrogen bond, due to competing quantum
effects.10–15 In particular, the zero-point motion of hydrogen in
the out-of-plane direction (a type of librational motion) acts to
increase R while the zero point motion of the stretching mode
acts to decrease R.11

In materials with strong H-bonds, NQEs decrease the donor–
acceptor distance (positive Ubbelöhde effect), while in materials
with weaker H-bonds the opposite effect occurs (negative Ubbelöhde
effect). The crossover from positive to negative Ubbelöhde effect has
been estimated to be around R = 2.6–2.7 Å.11,13 Both water and ice
have H-bonds that lie near this crossover point,4 and therefore the
magnitude and direction of the secondary isotope effect in simula-
tions of water and ice is particularly sensitive to the details of the
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water geometry. The secondary isotope effect in ice is known to be
positive (NQEs decrease R), leading to the anomalous isotope effects
discovered by Pamuk et al.16,17 This anomalous isotope effect occurs
in several phases of ice and persists even in room temperature
water.18

The ‘‘gold standard’’ technique for treating NQEs is path
integral molecular dynamics (PIMD).19 The sensitivity of com-
peting quantum effects to the water geometry and degree of
anharmonicity in the OH potential leads to a broad spectrum
of sometimes conflicting results obtained from PIMD simula-
tions of water with different forcefield models and DFT
functionals.11,13,20 As an example, the change in the dipole
moment of H2O when NQEs are included may be either
positive or negative depending on the functional or forcefield
being employed.12,21 Because of the high cost of incorporating
NQEs with PIMD, the testing of DFT functionals is often done
with D2O, where NQEs are much smaller due to the higher
mass of deuterium and can therefore be ignored. This may be
reasonable for testing density functionals, but the structure
and dynamics of D2O are different than H2O due to NQEs. In
the past, some people have introduced ‘‘effective NQEs’’ by
raising the temperature of their DFT simulation. This can be
justified theoretically for weakly interacting systems such as
gases or van der Waals bonding materials,22 but the same
justification does not apply to hydrogen bonded materials.
Increasing the temperature can be useful for compensating
for the overstructuring of GGA functionals, but should not
considered as an effective treatment of NQEs. A better option
for approximately simulating NQEs is to use colored noise
thermostats tuned to quantum zero point temperatures of
different modes in liquid water.23

We note that classical forcefield models are not a rigorous
way of studying NQEs because they are parametrized to
experimental data, leading to a double counting of NQEs
when used with PIMD simulation. Additionally, harmonic
models do not allow for a change in the average OH distance
from NQEs, and thus cannot capture primary or secondary
isotope effects. Even worse, we have found that PIMD simula-
tion with the harmonic model SPC-f24 (and to a lesser extent
q-SPC/Fw) shows an unphysical decrease in rOH,21 which must
be due to the ‘‘curvature problem’’ intrinsic to PIMD simula-
tion. In the curvature problem, beads curve around a spherical
shell of near constant rOH, causing the centroid to lie in the
interior, leading to a shorter rOH.21,25,26 While classical force-
fields have been reparametrized specifically for use with
PIMD,27,28 and also parametrized from Born Oppenheimer ab
initio simulations,29,30 the most rigorous and computationally
attainable way of studying NQEs in liquid water is by means of
DFT-based PIMD simulations.

1 Path integral molecular dynamics
methods

PIMD maps the partition function for the quantum mechanical
system onto the partition function of a classical system with the

following Hamiltonian:

H ¼
XN
i¼1

XNb

j¼1

pji
� �2
2mi

0 þ
mion

2

2
q
j
i � q

jþ1
i

� �2 !

þ
XNb

j¼1
V q

j
1; � � � ; q

j
N

� � (1)

here qk
i are (x,y,z) vectors containing the bead coordinates and

i = 1. . .N is the atomic index and k = 1. . .Nb is the bead index.
We have put a prime on mi

0 to indicate that these masses (called
fictitious masses) may be different than the physical masses mi.
A full derivation and description of the PIMD method can be
found elsewhere.21 Craig and Manolopoulos argue that simply
setting mi

0 = mi for all i does the best job of reproducing the
actual quantum dynamics, and call this methodology ‘‘Ring
Polymer Molecular Dynamics’’ (RPMD). However, when RPMD
is used the spectra are contaminated by spurious peaks caused
by the normal mode frequencies which span the entire spec-
trum from 0 to 2on where on = kBTNb/h�.31,32

In this section we discuss different options for rescaling the
fictitious masses as mj

0 = sjmj, where sj is a ‘‘mass rescaling factor’’.
The rescaling is typically done in normal mode coordinates, so j
indexes the normal modes of the ring polymer. The mass rescaling

factor rescales the bead normal mode frequencies as Ok
0 ¼ Ok

� ffiffiffiffiffi
sk
p

.
Ignoring thermostating choices, the major different PIMD
implementations that have been introduced are distinguished
solely by their choice of mass rescaling factor.21,25

In their original paper on PIMD,33 Parrinello et al. choose to
bring all of the non-centroid frequencies to the value of on. A
better approach is to scale the frequencies of the normal modes
to above the highest frequency of interest in the system, thus
avoiding the problem of normal mode contamination.32,34 In
effect, centroid molecular dynamics (CMD) rescales the normal
modes to a very high frequency.35 The disadvantage of this is
that it requires using a very short timestep, even when an exact
propagator is used to evolve the normal mode coordinates. The
PIMD simulation methodology we use is called ‘‘partially
adiabatic centroid molecular dynamics’’, denoted PA-CMD,
because we choose an intermediate rescaling.21,34 In most of
our work we scale all normal modes to 10 000 cm�1, well above
the overtones found at 5260 cm�1 and 6800 cm�1.

The other ingredient to PIMD is to attach thermostats to
each degree of freedom to overcome the ergodicity problems
first pointed out by Hall and Berne (1984).36 We use Nosé–Hoover
chain thermostats, with a chain length of 2. Alternatively, our code
allows for Langevin thermostats to be used. The thermostating
is done in normal-mode space, with the thermostats optimally
tuned to each normal mode as they are in the PILE thermostat
scheme of Ceriotti et al.37 Importantly, the centroid mode is
not thermostated, since doing so washes out the dynamics
(as shown in Fig. 1).

1.1 The many body expansion

Our method is based on the many body expansion, which gives
an exact decomposition of the potential energy into 1-body,
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2-body, 3-body, and higher order terms:

V fRIgð Þ ¼
XNmol

I¼1
V1 RIð Þ þ

XNmol

I o J

V2 RI ;RJð Þ

þ
XNmol

I o JoK

V3 RI ;RJ ;RKð Þ þ � � �

(2)

here RI refers to the set of nuclear coordinates of molecule I,
and Nmol is the number of molecules. In our method, we first
subtract off the DFT monomer energies using a monomer
potential energy surface (described below) fitted to the DFT
functional being used. By subtracting off this term, this allows
us to calculate the intramolecular energy using PIMD with the
Partridge–Schwenke monomer potential energy surface (PES),38

which is a highly accurate surface derived from CCSD calcula-
tions. This can thought of as a monomer correction to the DFT
potential:

V 0 fRIgð Þ ¼ VDFT fRIgð Þ �
XNmol

I¼1
V1DFT RIð Þ

þ
XNmol

I¼1
V
ðPIMDÞ
1PS RIð Þ (3)

Therefore, the intramolecular energies and forces are calcu-
lated with PIMD, while the intermolecular forces and energies
are calculated using standard techniques. The intermolecular
forces on the beads are all set equal to the intermolecular forces
computed from the bead centroids. Thus, in each timestep
we only have to do one DFT calculation, using the centroid
coordinates.

In addition to allowing for more efficient calculation of
NQEs, our method has the added advantage of including a
monomer correction to the DFT energy.39 It has previously been
shown that a large contribution to DFT error is in the monomer
term.40 A comparison of radial distribution functions (RDFs)

for conventional PBE and monomer-corrected PBE with
64 molecules is shown in Fig. 4. It is worth noting that in place
of a monomer correction, the PES fit to the functional being
used may be used instead, as may be desired for doing a
rigorous comparison of different functionals with our method.

1.2 Monomer potential energy surface

The functional form of the potential energy surface developed
by Patridge and Schwenke is:38

V(r1,r2,y) = Va(r1) + Va(r2) + Vb(rHH) + Vc(r1,r2,y) (4)

where

VaðrÞ ¼ D½e�2aðr�r0Þ � 2e�aðr�r0Þ�

VbðrÞ ¼ A e�br

Vcðr1; r2; yÞ ¼ c000 þ e�b½ðr1�reÞ
2þðr2�reÞ2�

�
X
ijk

cijk r1 � reð Þ=re½ �i r2 � reð Þ=re½ �j

� cosðyÞ � cosðyeÞ½ �k

(5)

here re and ye are fixed in advanced to match water’s geometry
and A, D, a, b, r0, and cijk are all free parameters. As in the work
of Partridge and Schwenke we truncate the polynomial expan-
sion of Vc at i + j r 8 and k r 14� (i + j) for a total of 245cijk. We
found that fitting this PES to DFT monomer data was the most
technically challenging part of implementing our method. The
fit was performed with a training set of DFT energies for 1176
monomer configurations. As was done by Partridge and
Schwenke, we found that we had to fit to points calculated on
a nonlinearly spaced grid, with more points where the PES
changes rapidly (i.e. around rOH = 0.95 Å). More specifically, we
computed DFT energies at rOH1,rOH2 A { 0.65, 0.75, 0.85, 0.95,
0.975, 1.0, 1.05, 1.1, 1.2, 1.3, 1.5, 1.6, 1.7} Å and yHOH A {85, 95,
100, 105, 110, 115}. While Partridge and Schwenke computed
their fit on a grid of points going out to only 1.4 Å, we found we
had to add additional points out to 1.7 Å to obtain the correct
asymptotic behaviour in the fit. Fitting to only 1.4 Å led to
occasional water dissociation events in the simulation which
would cause the simulation to fail. The results of our fitting are
visualized in Fig. 2 and 3.

Fig. 1 Comparison of IR spectra using Langevin (PILE) and Nosé–Hoover
thermostating. The IR spectra from PIMD simulation are shown for SPC/F
with Langevin thermostating on all the modes, which washes out the
dynamics. We do not thermostat the centroid mode with PILE, which
preserves the dynamics, as shown for TTM3F and the monomer PIMD
method.

Fig. 2 The monomer potential energy surface of Partridge and Schwenke
(left) and vdW-cx (right).
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1.3 Integration of the forces

The use of the monomer PES introduces a split between intra-
molecular and intermolecular forces. Tuckerman et al. show how
to derive an integration scheme when there is a splitting between
long range and short range forces.41,42 The method is based on the
classical propagator eiLDt, which exactly evolves the system from an
initial phase space point G(t) = {Sr,Sp} at time t to a final point at
t + Dt through G(t + dt) = eiLDtG(t). The part of the Liouville operator
that evolves momentum (Lp) is decomposed into short range (s)
and long range (l) components:

L ¼ Lg þ Lr þ Ls
p þ Ll

p

¼ Lg þ
Xna
i

pi

mi
� @
@ri
þ
Xna
i

F s
i �

@

@pi
þ
Xna
i

F l
i �

@

@pi

(6)

here Fl
i and Fs

i are the long and short range forces on atom i, na is
the number of atoms, Lr is the part of the operator which evolves

position and Lg refers to the part of the operator which evolves the
Nosé–Hoover thermostat. To obtain an integration method, the
operator is split using the Trotter formula:

eiLDt � eiLg
Dt
2 eiL

l
p
Dt
2 eiL

s
p
Dt
2 eiLrDteiL

s
p
Dt
2 eiL

l
p
Dt
2 eiLg

Dt
2 (7)

This expression can be translated into an algorithm by reading the

sequence of propagators from right to left – i.e. eiL
l
p
Dt
2 corresponds

to an half timestep update of the momentum using the long range
forces, etc.41 The integration algorithm obtained is equivalent to a
nested velocity-Verlet scheme. Multiple time steps (MTS) can be
introduced by further splitting the inner part of eqn (7) so the
short range forces are integrated M times for every time the long
range forces are integrated:

eiLDt � eiLg
Dt
2 eiL

l
p
Dt
2 eiL

s
p
Dt
2MeiLr

Dt
MeiL

s
p
Dt
2M

� 	M
eiL

l
p
Dt
2 eiLg

Dt
2 (8)

The inner timestep becomes
Dt
M

, where M is an integer. Lehr et al.

have demonstrated how MTS can be implemented in Hartree–
Fock calculations for water clusters by splitting the long and short
range forces via a fragment-based approach, thus showing that
MTS can be done in the context of an ab initio simulation.43

When using MTS, one should be aware that resonances can
occur between the fast timestep and the slower timestep. The
first resonance occurs when the outer timestep becomes larger
than Dtmax = t/p, where t is the period of the fastest mode
in the problem. For water, this would be the OH stretch
frequency E3600 cm�1 which leads to a value of Dtmax =
2.95 fs. However, in PIMD simulation one must also consider
the maximum frequency normal mode of the ring polymer
when combined with the maximum OH stretching frequency,

which is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oRP;max

2 þ oOH;max
2

p
. Our testing showed that the

size of the outer timestep cannot go above E1.5 fs – any longer
and the simulation quickly becomes unstable. However, Morrone,
et al. have shown that the use of colored noise thermostats can
stabilize resonances, offering the possibility of higher outer
timesteps.44

2 Comparison to other methods

Our method can be understood as an extension to ab initio MD
of the ring polymer contraction method introduced by Mark-
land and Manoloupolos for classical MD.45,46 In ring polymer
contraction, long-range forces are analyzed using a contracted
ring polymer with n0 beads that are constructed by taking the n0

lowest frequency ring polymer normal modes in Fourier space
and transforming them into real space. Short range forces are
analysed on all n beads. Our method corresponds to contrac-
tion of the long range forces to n = 1, i.e. the centroid mode
(sometimes denoted as n = 0), and a separation between long
range and short range forces that corresponds to intermolecu-
lar and intramolecular forces.

Recently, two separate groups have published a method
called ‘‘quantum ring polymer contraction’’, which uses an
auxiliary potential to perform ab initio PIMD with little added

Fig. 3 Energy vs. rOH for the case where rOH1 = rOH2. Different HOH
angles are shown in different colors. The Partridge and Schwenke energy
surface is compared with a custom fit to PBE.

Fig. 4 Comparison of RDFs for conventional PBE and monomer cor-
rected PBE. The simulations had 64 molecules and lengths of 35 and 27 ps,
respectively.
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cost.28,47,48 The method they employed, while couched in
different language, is similar to the method we present here.
The principal difference is that they use self consistent charge
density functional tight binding (SCC-DFTB) as the auxiliary
potential in place of the monomer PES we use here. As
discussed before, the use of a PES makes our simulation more
accurate, while using SCC-DFTB has the opposite effect.

Recently a number of papers have been published that
combine ring polymer contraction with a MTS integrator and
the idea of mixing forces49 from higher level and lower level
ab initio methods.47,50,51 In such methods, a lower level ab initio
technique is used to handle the short timestep and full ring
polymer, while a higher level (more expensive) technique is
used with the longer timestep and contracted ring polymer. For
example, in two recent studies, MP2 was combined with DFT in
this manner to study small gas phase molecular systems.50,51

A variation of this method called multilevel sampling has also
been introduced and applied to FCC hydrogen, resulting in
a 3–4� speedup in PIMD simulation.52

Another methodology introduced recently, ring polymer
interpolation, achieves a 2.5–10� speedup, depending on the
accuracy one desires.53 Ring polymer interpolation could be
combined with our method, resulting in a multiplicative
speedup. Finally, another option for speeding up PIMD simula-
tion is to incorporate adaptive resolution PIMD methods,54

which allow for PIMD simulation of a small region to be
combined with classical simulation of a larger region.55

3 Verification of the method

To verify that our method captures nuclear quantum effects with
minimal losses in accuracy compared to a full PIMD simulation,
we compare several observables – RDFs, dipole moments, density
of states, the average bead radius of gyration, and OH distance
histograms. The infrared spectrum is calculated using:56

nðoÞaðoÞ ¼ o2

6kBTe0Vc

ð1
�1

e�iothPð0Þ � PðtÞidt (9)

here a(o) is the IR absorption coefficient per unit length, n(o) is
the index of refraction, and P is the dipole moment of the entire
system. In PIMD simulation there are two ways to calculate the
dipole moment – the first is to use the centroid positions:

mi ¼ m �rO; �rH1; �rH2ð Þ

�ri ¼
1

Nb

XNb

j¼1
r
j
i

(10)

here rX refers to the position of atom X, while rj
i refers to the

position of bead j in atom i. The second is to calculate the dipole
moment separately for each bead ‘‘image’’ and then average them:

mi ¼
1

Nb

XNb

j¼1
m r

j
O; r

j
H1; r

j
H2

� �
(11)

For a linear dipole function the results are the same, but for
a non-linear dipole function, such as in TTM3F or DFT, the

results are not guaranteed to be the same. In practice no
difference is observed between the two methods.57 We imple-
mented the second method (eqn (11)) because of its simplicity
and because it is more in line with how estimators typically
work in CMD. To calculate dipole moments for our DFT
simulations, we calculated approximate dipoles using TTM3F
(a polarizable model) using the centroid coordinates from
DFT.58 We found that polarization included in the TTM3F
dipole model is necessary to correctly capture the intensity of
the OH-stretching peak.

We calculate the ‘‘density of states’’ for hydrogen using the
velocity–velocity autocorrelation function:

IðoÞ ¼ 1

NH

ð1
�1

e�iot
XNH

i¼1
hvHi ð0Þ � vHi ðtÞidt (12)

The extent of delocalization of the hydrogen atoms is
quantified through the radius of gyration, which is the root
mean square displacement of ring polymer beads from the
center of the ring:

rgyr;H ¼
1

NHNb

XNH

i¼1

XNb

j¼1
rji � rci


 

 (13)

3.1 Tests with TTM3F

The first verification of our method was done with the polariz-
able TTM3F potential, which is parametrized from ab initio
simulations and uses the PS potential energy surface natively,
but modified to give the correct dissociation behaviour at large
rOH.60 We simulated a system of 256 molecules for 200 ps with a
9 Å realspace Coulomb cutoff. Radial distribution functions
(RDFs) are shown in Fig. 5. As has been noted elsewhere,
TTM3F exhibits only small primary isotope effect and very little
or no secondary isotope effect,16 due to a lack of anharmonicity
in the rOH potential and competing quantum effects. Thus, the
first O–O peak is only slightly lower and the nuclear quantum
effects primarily manifest themselves in the broadening of the
first O–H peak and decreased length of the second O–H peak,

Fig. 5 Validation with TTM3F: RDFs for the three methods at 300 K.
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which indicates slightly shorter/stronger H-bonds. The mono-
mer PIMD and full PIMD O–O RDFs are nearly the same, but
the multiple time step monomer PIMD is noticeably shifted to
smaller distances. The reason for this discrepancy is not clear,
but very similar discrepancies are observed by Marsalek, et al.
when applying their quantum ring polymer contraction method
to RevPBE + D3.47

The density of states spectrum for a single molecule simula-
tion with TTM3F is shown in Fig. 5 and 6 and the infrared
spectrum for bulk water is shown in Fig. 7. Since some of the
parameters of TTM3F, such as the dipole moment surface, are
specifically tuned to reproduce the infrared spectrum at 300 K,
the placement of the peaks in the classical simulation is quite
good. When NQEs are incorporated, the OH-stretching band is
redshifted and broadened. The HOH bending mode is also
redshifted. Our monPIMD method reproduces the PIMD spec-
trum almost exactly, indicating very good capturing of NQEs.
Further properties are given in Table 1. The diffusion constant
of TTM3F is only slightly increased by NQEs due to competing
quantum effects, as was previously discussed for TIP4P/2005f.12

The nuclear delocalization, as measured by the radius of gyration
was 1.54 Å for the full PIMD simulation and 1.56 Å for the
monPIMD simulation. The max rOH during the entire simulation,
as measured by the centroid–centroid distance, was 1.18 Å for the
full PIMD simulation and 1.23 Å for monPIMD simulation. A more

complete comparison of the bead–bead delocalization in full and
monomer PIMD is obtained by looking at the histograms in Fig. 9.
Together, the results in Table 1 and histograms in Fig. 9 indicate
that the delocalization in the full and approximate methods are
nearly the same.

3.2 Tests with DFT

We tested our method with PBE61 and the Berland–Hyldgaard
functional,62 which is a version of the DRSLL vdW functional
introduced by Dion et al. with modified exchange.63 We choose
this functional because of its consistent-exchange semilocal
exchange choice (vdW-cx), which makes it very robust for
simulating a variety of physical systems.62 In addition, the
functional performance on liquid water, has been analyzed in
detail39 and shown to be comparable to other vdW-based
density functionals. We began by simulating isolated molecules
with both full PIMD and monPIMD, and then progressed to
simulating a pentamer cluster. The distributions of rOH for the
pentamer cluster simulations of vdW-cx with both full PIMD
and monPIMD are shown in Fig. 9. The distributions of
centroid–centroid and bead–bead rOH distances are nearly the
same, with slightly more delocalization observed in the full
PIMD simulation as compared to monomer PIMD. Similar
results were observed for PBE.

Fig. 12 shows the DOS for a single molecule simulated using
the vdW-cx functional with conventional PIMD and our monomer
PIMD method with 1 bead and 32 beads. The expected redshifting
of the bending and stretching bands is observed, however addi-
tional peaks are observed at E2250 cm�1 and E5250 cm�1. These
frequencies correspond to the association band and the first
overtone band, respectively. The association band also appears
in the DOS in TTM3F simulation of bulk water (see Fig. 8) but has
a tiny magnitude. The spurious enhancement of both peaks is
observed both with 1 beads and 32 beads, indicating it stems from
some aspect of the effective potential energy surface rather than
bead normal mode contamination. Careful inspection of our fit
potential energy surface did not reveal any irregularities. Attempts
to refit the surface with more data points were not successful in
reducing the intensity of either peak in the spectra. Interestingly,
the intensity of the association band at E2100 cm�1, which is due
to a combination of libration and HOH bending, has been found

Fig. 6 Validation with TTM3F: hydrogen density of states (DOS) for one
molecule (gas phase) at 300 K.

Fig. 7 Validation with TTM3F: infrared spectra for the three PIMD meth-
ods for 128 molecules compared to the classical spectra and experimental
data at 300 K.59

Table 1 Average OH distance, average HOH angle, average dipole
moment, diffusion constant, average radius of gyration of the beads,
max bead–bead OH distance and max centroid–centroid OH distance.
Note: average OH distances for PIMD simulation are reported in the form
centroid–centroid distance/bead–bead distance

Property

TTM3F

Class. FullPIMD monPIMD

hrOHi 0.986 0.994/1.01 0.996/1.0
hyHOHi 105.43 105.4 105.66
hmi 2.757 2.835 2.855
D (10�5 cm2 s�1) 2.7 3.0 2.9
hrgyri 0.0 0.1507 0.1515
Max bead rOH 1.18 1.54 1.56
Max cent. rOH 1.13 1.18 1.23
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to be very sensitive to the coordinates used to construct the
dipole moment surface and other factors such as H-bonding
configuration.64 Given the fact that PIMD is only rigorous for the
calculation of equilibrium properties,34 and that many methods

suffer from spurious peaks from normal mode contamination,31,32

the presence of enhanced peaks in the spectrum is not as large of
an issue as it may appear.

Next we performed a simulation of 64 molecules with the
monomer PIMD method for both vdW-cx and PBE. A compar-
ison of RDFs is shown in Fig. 10 for vdW-cx. We observe the

Fig. 9 Histograms of the rOH distance for a simulation of bulk water (128
molecules) with TTM3F and of a pentamer cluster with vdW-cx. Only slight
differences are observed between full PIMD (solid lines) and the mono-
merPIMD method (dashed).

Fig. 10 Comparison of RDFs for vdW-cx simulated at 350 K with the
monomer PIMD method (with the monomer correction) compared to a
conventional vdW-cx simulation.

Table 2 Comparison of properties in classical vs. monPIMD simulation of
64H2O molecules with the vdW-cx functional. Average OH distance,
average HOH angle, average dipole moment, diffusion constant, average
radius of gyration of the beads, max bead–bead OH distance and max
centroid–centroid OH distance. Note: average OH distances for PIMD
simulation are reported in the form centroid–centroid distance/bead–
bead distance

Property Class. monPIMD

hrOHi (Å) 0.994 0.986/.997
hyHOHi 104.6 105.0/104.80
hmi (D) 3.68 3.66
D (10�5 cm2 s�1) 2.3 3.4
hrgyri (Å) 0.0 0.146
Max bead rOH (Å) 1.19 1.49
Max centroid rOH (Å) 1.19 1.19

Fig. 8 Validation with TTM3F: hydrogen density of states (DOS) for 128
molecules at 300 K.

Fig. 11 Density of states (eqn (12)) for 64 molecules with conventional
MD, compared with the monomer PIMD method (32 beads).

Fig. 12 Density of states (eqn (12)) for a single molecule with the vdW-cx
functional simulated with traditional classical DFT and the monomer PIMD
method with 1 bead and 32 beads at 350 K.

PCCP Paper

Pu
bl

is
he

d 
on

 0
3 

D
ec

em
be

r 
20

18
. D

ow
nl

oa
de

d 
on

 1
/2

0/
20

19
 7

:3
5:

58
 P

M
. 

View Article Online

http://dx.doi.org/10.1039/c8cp06077k


416 | Phys. Chem. Chem. Phys., 2019, 21, 409--417 This journal is© the Owner Societies 2019

correct destructuring of the first O–O peak and first O–O valley
as well as the expected destructuring of the O–H and H–H
peaks. Information on the average water molecule geometry,
dipole moment, and diffusion constant is shown in Table 2.
Our simulation with monPIMD results in a slightly larger rOH

and HOH angle, and leads to a slightly smaller (�0.5%) dipole
moment, and larger diffusion constant. The density of states
for the 64 molecule vdW-cx simulation is shown in Fig. 11.
Again we see that the same enhancement of the association
band observed with the monomer.

4 Conclusion

We have introduced a new methodology for speeding up PIMD
simulation with density functional theory and have shown that
it allows for computationally tractable PIMD DFT calculations
of the equilibrium properties of water. The Fortran-90 code we
have written implementing this method is open source and
available on GitHub.65 In principle our method can be applied
to any molecular system. The main hurdle to applying our
method to other molecules is fitting an accurate potential
energy surface, however recent work has shown how this can
be done with neural networks.66,67 Our method was fully
validated for TTM3F simulation of water, where we showed
that the method reproduces both the structure and dynamics of
liquid water observed in full PIMD simulation. The advantage
of our method is the E30� speedup obtained, which makes
ab initio PIMD simulations of water practical. The method
nonetheless requires careful mapping and fitting of a monomer
potential energy surface whenever the DFT functional or basis
set is changed. However, this process is fast and easy to
implement. While the structural properties of water found with
our method are almost as good as the full PIMD simulation, we
do observe enhancement of the association peak in the DOS for
the ab initio functionals. We explored some possible causes for
this effect and attempted to mitigate it, but more work is
needed to fully understand it.

There are several variations of our method that could be
explored. The first is to use a monomer DFT calculation to subtract
off the monomer energies and forces (eqn (3)) and then perform
monomer DFT calculations to obtain forces and energies for the
monomer PIMD calculations. Doing this requires (Nb + 1) � Nmol

additional DFT monomer calculations to be performed each
timestep but has the benefit of avoiding the need for a PES and
provides a more accurate representation of the DFT forces and
energies. We estimate there should be at least a 2� speedup over
conventional PIMD with such a method, and possibly much
higher. With such a method the monomer calculations can be
trivially parallelized over many nodes on a cluster.
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