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The origin of the Debye relaxation in liquid water
and fitting the high frequency excess response

Daniel C. Elton ab

We critically review the literature on the Debye absorption peak of liquid water and the excess response

found on the high frequency side of the Debye peak. We find a lack of agreement on the microscopic

phenomena underlying both of these features. To better understand the molecular origin of Debye peak

we ran large scale molecular dynamics simulations and performed several different distance-dependent

decompositions of the low frequency dielectric spectra, finding that it involves processes that take place

on scales of 1.5–2.0 nm. We also calculated the k-dependence of the Debye relaxation, finding it to be highly

dispersive. These findings are inconsistent with models that relate Debye relaxation to local processes such as

the rotation/translation of molecules after H-bond breaking. We introduce the spectrumfitter Python package

for fitting dielectric spectra and analyze different ways of fitting the high frequency excess, such as including

one or two additional Debye peaks. We propose using the generalized Lydanne–Sachs–Teller (gLST) equation

as a way of testing the physicality of model dielectric functions. Our attempts at fitting the experimental

spectrum using the gLST relation as a constraint indicate that the traditional way of fitting the excess

response with secondary and tertiary Debye relaxations is problematic. All of our work is consistent with

the recent theory of Popov et al. (2016) that Debye relaxation is due to the migration of Bjerrum-like

defects in the hydrogen bond network. Under this theory, the mechanism of Debye relaxation in liquid

water is similar to the mechanism in ice, but the heterogeneity and power-law dynamics of the H-bond

network in water results in excess response on the high frequency side of the peak.

I. Introduction

The Debye relaxation peak dominates the dielectric absorption
spectrum of water. The peak is centered at E20 GHz (0.66 cm�1)
and spans six decades of frequency. The large oscillator strength of
the Debye peak (73 at 25 1C) can be viewed as the main contributor
to water’s anomalously high static dielectric constant through the
f-sum rule. The Debye absorption peak is of immense practical
importance as it is used in microwave ovens and in satellite-based
microwave radar sensing of water and ice.1–3

Water is an anomalous, complex liquid that serves as the
arena for all life on planet Earth. As such, there is a long legacy
of research on water which continues to be built upon today.
Current topics of interest among researchers include the possible
liquid–liquid phase transition in water,4,5 understanding water’s
behaviour under extreme thermodynamic conditions and
confinement, and understanding the important role of nuclear
quantum effects in water.6,7 In this paper we focus on the
dielectric relaxation of water, about which an enormous

literature already exists, including several recent detailed theoretical
studies.8–12 In our review of this literature, we found a lack of
agreement on the molecular origins of the Debye relaxation and
further disagreement on how to fit excess response on the high
frequency side of the Debye relaxation, which historically had
been fit with a secondary Debye relaxation. Some authors relate
Debye relaxation to particular translational and/or rotational
motions of a single molecules after breaking one or more hydrogen
bonds.13–15 Other authors propose that Debye relaxation is due
to the movement of ‘‘free’’ molecules which only have one or
two hydrogen bonds.16–21 In contrast to these theories, other
authors describe Debye relaxation as a collective relaxation of a
cluster or large collection of molecules,22 which is more in line
with dielectric theories that establish how the collective relaxation
time increases due to dipole–dipole correlation. Finally, recently a
few authors have also proposed the hopping of defects allow
the rearrangement of the hydrogen bond network and Debye
relaxation,8,9,23 in analogy to the process underlying Debye
relaxation in ice.24 As a macroscopic measurement, dielectric
relaxation spectroscopy alone does not provide enough information
to distinguish between the various mechanisms that have been
proposed. In this work, we analyze large scale molecular dynamics
simulations to gain insight into the collective nature of Debye
relaxation.
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It is worth dwelling on the fact that the Debye peak in water
is nearly perfectly Debye. Most other dipolar liquids and virtually
all polymeric liquids exhibit more complex relaxation.25 In such
liquids, a phenomenological equation called the Havriliak–Negami
(HN) formula is often used:

eðoÞ � e1
eð0Þ � e1

¼ AHN

1þ iotHNð Þa½ �b
(1)

The case a a 1, b = 1 is known as Cole–Cole relaxation, and
corresponds to a symmetric distribution of exponential relaxations.
The applicability of the HN equation to water has been tested
several times before. For instance Kaatze (1993) found a = 0.989(2)
and b = 0.959(4).26 Vij et al. (2004) report a = 1, b = 1.14 Mason’s
careful fit of the Cole–Cole equation yields a = 0.988 � 0.008.27

The fact that the Debye relaxation peak is so well described
by a single relaxation process clashes with our understanding
of the structure and dynamics of the hydrogen bond network.
Saito and Ohmine28 used molecular dynamics simulation to
find that the relaxation of the polarization vector of a large
water cluster exhibits a long-time tail, which can be fit with
either a stretched exponential (also called a Kohlraush function,
P(t) p exp[�(t/t)b]) or a 1/f a power law, both of which correspond
to a broad distribution of relaxation times.29 Similarly, molecular
dynamics studies show that both the relaxation of the polarization
vector of single molecules and hydrogen bond auto-correlation
functions are well described by a stretched exponential.30,31

Ohmine and Tanaka, in a detailed review, present evidence from
molecular dynamics simulations that hydrogen-bond network
rearrangement dynamics are complex and highly collective in
nature.32 They find evidence that the hydrogen bond network
‘‘contains many relaxation processes, with many time scales’’. This
is reflected in the fact that the low frequency Raman spectrum of
water between 1–20 cm�1 is very diffuse and can be fit with a
power law.32 Reconciling the complex heterogeneous dynamics of
the H-bond network with the pure exponential character of the
Deybe relaxation has been recognized as an important unresolved
issue.32–34 A possible clue to solving this issue comes from the fact
that if Coulomb interactions are smoothly truncated at 9 Å,
dielectric relaxation decreases from E9 ps to only 1 ps and
assumes a 1/f a character.32 The structure of water in such
situations may be highly non-physical as well.35,36 These results
suggest that long range dipole–dipole interactions and/or the
long range structure of the H-bond network are necessary to
recover the exponential character of Debye relaxation. Further
evidence comes from studies with salt, which show that Debye
relaxation does not change very much with increasing salt
concentration.37,38

II. Critical analysis of previous ideas
about Debye relaxation
A. Models based off Debye–Stokes theory

We first consider Debye’s original theory from 1929.39 Debye
considers a thermal ensemble of non-interacting molecules in
an applied electric field, and considers what happens when the

field is turned off. His starting assumption, which is now
known to be incorrect, is that each individual water molecule
undergoes Brownian rotational motion. Molecular dynamics
simulations show that molecular relaxation in water actually
occurs in highly discontinuous ‘‘jumps’’ due to the breaking of
H-bonds, rather than small angle Brownian diffusion.30,40–43

Debye then takes the diffusion equation in spherical coordinates,
linearizes it, and finds that the average moment decays exponentially
with time, leading directly to the Debye equation for dielectric
relaxation:

eðoÞ ¼ eð0Þ � e1
1þ iotD

þ e1 (2)

Under this model, the Debye relaxation time tD is related to the
rotational friction constant z via tD = z/2kBT. Stokes showed that
for a sphere of radius a rotating in a medium with shear
viscosity Z, the rotational friction is given by z = 8pZR3. This
leads to the Debye–Stokes model for tD(T):

tDSðTÞ ¼
4pZðTÞR3

kBT
(3)

This equation fits the experimental data for Z(T) and tD(T)
remarkably well, with a value of R = 1.44 Å at 0 1C which is
about the right radius for a single water molecule.13,44 Many
authors have noted this agreement and concluded that Debye’s
model is essentially correct, and that Debye relaxation is due to
the rotational relaxation of single molecules. Furthermore,
Stoke’s model leads to the Stokes–Einstein relation, which says
that the translational diffusion constant is given by:

1

DðTÞ ¼
6pZðTÞR
kBT

/ tDSðTÞ (4)

The Stokes–Einstein relation is borne out experimentally, as is
the proportionality between tD(T) and 1/D(T) – both follow
Arrhenius-like temperature dependencies with very similar rate
coefficients.17 Eqn (4) only breaks down when water comes
supercooled.22,44,45 Bertolini argues that the Arrhenius temperature
dependence must be due to a barrier hoping process.45 Agmon
builds his theory for Debye relaxation in water on eqn (3) and (4),
suggesting that it is due to translational hopping. In particular, he
proposes that Debye relaxation is due to a hopping process called
‘‘tetrahedral displacement’’.44 Tetrahedral displacement has a
hopping distance of 3.3 Å, which is ‘‘the separation between an
occupied and unoccupied corners of a cube binding the penta-
water tetrahedron’’.44 We will argue later that Agmon’s model is
either incorrect or incomplete, because it does not explain the
collective nature Debye relaxation that we find.

Hansen et al. note that both the Debye–Stokes and Stokes–
Einstein equations fail for ordinary liquids, yielding a value
RH which is much smaller than the molecular R.10 They note
that for most molecular liquids, empirically it is found that
RH E R/2.10 If one uses this empirical relation, one finds tDS E
tD/8 E t2. In other words, the agreement of RH E R when
eqn (3) is applied to water’s Debye relaxation should be taken
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as coincidental. This makes sense if one understands tD as
a collective phenomena, and t2 as being related to single
molecule relaxation.

B. Mean-field theories

The Debye–Stokes model is based on the flawed assumption
that interactions between molecules can be ignored – notably
dipole–dipole forces and H-bonding interactions. The effects of
dipole–dipole interaction can be approximately accounted for
by using a mean-field theory. The simplest mean-field theory is
obtained by taking Debye’s molecular dipole undergoing Brownian
diffusion and moving it into a homogeneous medium described
by a frequency dependent dielectric function e(o). The dipole
then feels an additional ‘‘internal field’’ due to the polarization
response of the medium. After solving the system self-consistently,
one again obtains the Debye equations for e(o), but now:22

tD
ts
¼ eð0Þ þ 2

e1 þ 2
� 11 (5)

In other words, the relaxation time for the polarization of the entire
system, as measured through e(o), is greater than the relaxation
time for the single dipole tS. Here eN can be understood as the
excess oscillator strength not described by Debye relaxation. We use
the experimental values e(0) = 78.6 and eN = 5.4 to obtain a ratio of
10.8. The ratio experimentally varies considerably with experiment
(Table 1) between 8.3–34, with an average of E13. We know that the
Debye model is wrong, though, because the same mean field theory
framework gives a completely wrong estimate of e(0), and predicts
that water exists in a ferroelectric phase at room temperature.

The Onsager mean-field model for e(0),46 consisting of a
dipole in a cavity, is considered a significant improvement over
Debye’s model. When the dipole moment is in a cavity, a
‘‘reaction field’’ field appears in addition to the internal field. Cole
extended the Onsager mean-field model to the time dependent
case, yielding a complicated dielectric function which corresponds
to a non-exponential relaxation. Glarum extended Onsager’s

model to the time-dependent case,47 recovering the Debye
equations with:

tD
ts
¼ 3eð0Þ

2eð0Þ þ e1
¼ 1:46 (6)

A similar theory by Powles yields:48

tD
ts
¼ 3eð0ÞGK

2eð0Þ þ e1
(7)

Here the Kirkwood factor GK includes the effects of local
dipole–dipole correlation.

tD
ts
¼ 2eð0Þ þ e1

eð0Þ þ 2e1
¼ 1:8 (8)

A variety of more sophisticated mean field theories have been
developed, the details of which we will not recount here.22,49–52

A common outcome of these models is that dipole–dipole
correlations lead to the macroscopic dipole relaxation time of
being longer than the molecular one. The same principle holds
for clusters relaxing in a dielectric environment.

C. Propagation of defects

Finally we come to the recent idea that Debye relaxation is due to
the propagation of defects, as is the case in ice. There are four main
defects in ice – two charged (H3O+ & OH�) and two uncharged
(Bjerrum L & D defects). The propagation of these defects are
responsible for Debye relaxation in ice, with the defect with the
lowest energy barrier determining the timescale of the relaxation.53

Popov et al. show that in liquid water the activation energies
of charged and uncharged defects should be roughly the same, so
distinguishing which may underlie Debye relaxation requires some
additional analysis. Artemov & Volkov propose that Debye relaxa-
tion is entirely due to the conduction of the charged defects.23

Their model makes the claim that nearly 10% of water molecules
are ionized, which differs by six orders of magnitude from the
accepted value of Kw = 10�7.23,54 This idea is inconsistent with

Table 1 Reported two-Debye and three-Debye fits for experimental data taken at 298 K (25 1C) over the last 30 years. DRS = microwave dielectric
relaxation spectroscopy, ATR = THz attenuated total reflectance spectroscopy, TDS = THz time domain reflection spectroscopy, fLS – femotosecond
laser spectroscopy, dFTS = dispersive Fourier transform spectroscopy

tD (ps) t2 (ps) t3 (ps) f1 f2 f3 Range (cm�1) Method Ref.

8.3 1.0 72 1.69(3) 0.03–3 DRS Barthel, 199060

8.4 1.1 72 1.75 0.006–14 DRS Buchner, 199716

8.4 0.91 72(1) 1.77(6) 0.075–10 DRS Peacock, 200961

8.3 0.39 75 1.67(3) 0.2–4 DRS Sato, 200862

8.3 0.36 72 2.12 6–83 ATR Möller, 200963

0.248(8) 75(1) 1.67(3) ATR Yada, 200864

7.0(3) 0.92(6) 70(1) 2.0(3) 2–66 TDS Ronne, 199713

8.3 0.42 73 2 0.001–3 TDS Fukasawa, 200565

8.24(4) 0.18(14) 73 1.9(5) 2–50 fLS Kindt, 199625

8.8(6) 0.21(6) 73 1.5(8) 3–55 fLS Venables, 199866

7.8 0.2 73 1.6 0.16–33 var Liebe, 199167

8.21 0.39(5) 73 2.5(2) 0.1–33 var Benduci, 200768

8.31 1.0a 0.10b 71.5 2.8 1.6 50–220 dFTS Vij, et al. 200414

8.26(3) 1.1(5) 0.14(4) 73 2.2(2) 1.3(3) 0.1–33 var Benduci, 200768

8.5 0.93 0.08 0.03–800 var Ellison, 200769

8.4(3) 1.05(15) 0.18(5) 0.02–37 var Vinh, et al., 201537

a HN model for t2, a = 1, b = 0.77. b HN model for t3, a = 0.9, b = 0.8.
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classical molecular dynamics simulations, which can satisfactorily
reproduce the dielectric response of water, even though they do not
contain charged defects.55,56 Furthermore, Popov et al. note that the
dielectric relaxation does not depend on pH, as it would in Artemov
& Volkov’s model.8 Popov et al. propose Debye relaxation is due
entirely to Bjerrum-like defects, which carry an effective charge.
The bifuricated hydrogen defect (Bjerrium D-like) results in
excess positive charge locally and the bifuricated Oxygen defect
(Bjerrium L-like) results in excess negative charge locally. If
defects follow ordinary diffusive behaviour (hr2(t)i = 6Ddefectt),
then it is easy to show that the Debye equation for the dielectric
response results.8 The existence of defects Bjerrium L & D defects
(biffuricated bonds) in liquid water is supported the analysis of
X-ray scattering data by Sciortino et al.57 It is also supported by the
molecular dynamics simulations of Laage & Hynes which found
bifuricated bonds lead to jump relaxation.41 We find the theory of
Popov et al. attractive as previously we showed that the librational
and OH-stretching dynamics of water are very similar to that of
ice and that both originate from propagating phonon-like
modes which travel through the hydrogen bond network.58,59

III. The secondary Debye process and
high frequency excess

We also seek to address an ongoing controversy on how to
fit the high frequency side of the Debye relaxation, between
1–100 cm�1, where there is unaccounted for excess response.
Ishai et al. and Popov et al. propose that this excess is also due
to the dynamics of defects propagating through the hydrogen
bond network which was discussed in the previous section.8,9

Traditionally however, this excess response has been fit by
introducing a second Debye mode, characterized by a time
constant t2. However, while the value of tD is very consistent
among experiments, values for t2 vary considerably in the
experimental literature, as shown in Table 1. An additional
problem, noted by Beneduci, is that the data on the temperature
dependence of t2 is contradictory – Barthel et al. find it increasing
with temperature while Ronne, et al. find it decreasing.68 To fix
these issues, recently it was proposed that a 3rd Debye relaxation
(t3) is also required to properly fit the high frequency excess.37,68

As with the primary Debye mode, different authors have
different hypotheses about the microscopic mechanisms that
underlie the secondary and putative tertiary Debye modes. t2 is
usually associated with the rotational relaxation of single
molecules and hydrogen bond breaking. Some attribute it to
the relaxation of weakly bound molecules.16 Molecular dynamics
show the average hydrogen bond lifetime to be around 0.5–1.0 ps
at 300 K,70 with a very broad distribution.71 Others propose the
excess response is either the a or (more oftenly) b relaxation
found in supercooled liquids.12

In light of the heterogeneous and non-exponential dynamics
of the hydrogen bond network, the use of one or two additional
exponentials to fit the excess response seems ad hoc. The ad hoc
nature of this fit can also be seen by considering some of the
infrared active H-bond vibrational modes that have been shown

to exist in the region of 10–200 cm�1 (Table 2). Heyden et al.
have shown that all of these modes span a broad frequency
range between 20–200 cm�1 due to the inhomogeneous nature
of the H-bond network.72 Instantaneous normal mode analysis of
water shows a broad spectrum of translational modes, extending
from very 1–400 cm�1 and peaked around 100 cm�1.25,70,73

Thus it appears that a large number of Debye and resonance
processes contribute to the excess response. This can be modeled by
fitting a distribution of modes. Unfortunately, fitting a distribution
of modes is a mathematically ill-posed problem – many dis-
tributions and combinations of modes may be consistent to the
experimental data within the uncertainty of the data. The wide
variation in experimental fits is at least partially explained by
the fact that the approximation of one or two additional Debye
relaxations to fit the excess is crude and that each experiment
only measures a certain window of frequencies. Since the fit is
approximate, it varies depending on the particular range of the
experiment. Furthermore, some authors do not unbias their
fitting, so the fit can be biased toward the side of the spectrum
that is higher in magnitude. Dielectric relaxation spectroscopy
(DRS) experiments can only probe the low frequency part
(0.0001–2 cm�1), while THz or microwave time-domain reflection
spectroscopy (TDS) probe the ‘‘middle’’ frequencies (1–10 cm�1),
as does a variation known as attenuated total reflectance spectro-
scopy (ATR).63 Finally, Fourier transform infrared spectroscopy
(FTIR) covers the region above 10 cm�1.

A side point is that an excess response on the high frequency
side of Debye relaxation is a general feature found in many dipolar
liquids, including non H-bonding liquids. It seems largely forgotten
that this was first pointed out in 1955, when Poley noticed that an
excess around 10 cm�1 (0.3 THz) exists in many dipolar liquids.74 To
explain this phenomena, which was called ‘‘Poley absorption’’ at
the time, Hill and others proposed that it was due to inertial
motion.75,76 Physically, inertial motion can be pictured as either
fast ‘‘rattling’’ of molecules within sharply defined potential
energy wells or as nearly-free rotations over small angles.77,78 In
water, inertial absorption (if relevant) would overlap with hydrogen
bond network vibrations and modes. Inertial relaxation results in
approximately a Gaussian form for f(t) near t = 0.75 In our previous
work58 we did not find any evidence of such Gaussian relaxation
except in f(k,t) for k 4 3 Å�1.

IV. Fitting the temperature dependence

The temperature dependence of Debye relaxation is usually
cited as being Arrhenius.44 According to transition state theory,
Arrhenius temperature dependence implies an free energy

Table 2 Some of the H-bond network modes in liquid water. All of these
modes are IR active and should appear in the dielectric response

Approx freq. (cm�1) Description Ref.

50–65 H-Bond bending (in plane) 44
70 H-Bond torsion 44
150 H-Bond sym. stretch (‘‘breathing’’) 44
180 H-Bond asym. stretch 44
80–150 Assymetric umbrella mode 72
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barrier DH, and in water one finds DH is roughly the hydrogen
bond energy. On the basis of this, Buchner proposes that the
Arrhenius temperature dependence of tD(T) is due to the production
rate of ‘‘free molecules’’, which he defines as molecules having 1 or
0 H-bonds.16 The percolation model of Stanley & Tiexera indicates
that tD(T) is due to reorientation of molecules having only one
hydrogen bond.18 Nabokov and Lubinov adapt a similar type of
model, but argue that molecules with both one and two hydrogen
bonds are mobile and thus contribute.17

Nabokov et al. note that tD(T) deviates from Arrhenius
behaviour at low temperature.17 To our knowledge a test of
different fit functions over the entire experimentally accessible
range has not yet been published. We combined data from
Ellison (2007)69 from between 273–373 K and the data collected by
Nabokov (1988)17 from between 255–533 K. The data taken above
373 K was measured along the gas–liquid co-existence curve. We fit
the log normalized data with the following fit functions:

tðTÞ ¼ Aa exp
DH
kT

� �
Arrhenius

tðTÞ ¼ t1 exp
DTVFT

T � TVFT

� �
Vogel�Fulcher�Tammann

tðTÞ ¼ As

T

T

Ts
� 1

� �g

Speedy0s equation78

tðTÞ ¼ AMCT � T � TMCTð Þg mode-coupling theory30

(9)

The results are shown in an Arrhenius plot in Fig. 1. Clear
deviations from Arrhenius behaviour (which would be a
straight line in this plot) are observed. The behaviour of tD(T)
is very nearly Arrhenius between 273–313 K, but the only model
which fits the data through the entire temperature range is the
Vogel–Fulcher–Tammann relation, which is used to fit the
‘‘a-relaxation’’ in glasses. We found tN = 0.14 ps, D = 4.52
and TVFT = 141 K. For the Arrhenius model we found DH = 0.16 eV
(3.7 kcal mol�1), which is approximately the hydrogen bond energy.
The mode-coupling theory power law was previously shown to fit
tD(T)31 in simulations of SPC/E water.80 The Speedy equation was

included because it is used to fit other response functions for
water, especially in the supercooled region.79

VFT temperature dependence is a universal feature of both
relaxor ferroelectrics and dipolar glasses,81,82 and indicates the
presence of spatial heterogeneity.83,84 A phenomenological
theory by Tagantsev shows that near TVFT VFT temperature
dependence is a consequence of a very wide distribution of
relaxation times in the system.85 A very general theory for the
VFT equation is the Adam–Gibbs model, which assumes the
existence of cooperatively rearranging regions (CRRs), which are
clusters that relax independently from each other, similar to the
polar nanoregions concept we introduced in a previous work.84

V. Molecular dynamics simulations

We performed a number of molecular dynamics simulations
using the TIP4P/2005 water model86 and the GROMACS
4.5.5 molecular dynamics package.86 Our simulations used a
Nosé–Hoover thermostat with t = 0.5 ps and a timestep of 2 fs.
Long range Coulomb interactions were handled with the particle
mesh Ewald method. All simulations were equilibrated for at
least 100 ps before trajectory output. Our 10 000 molecule (box
size L = 6.68 nm) simulation was 4 ns long and used a Coulomb
cutoff of r = 3.34 nm. We analysed the simulation trajectories
using our epskw Fortran code for molecular liquids. The code
is open source and available online at https://github.com/
delton137/epskwwww.github.com/delton137/epskw.

VI. k-Dependence

Fig. 2 shows the k dependence of the Debye relaxation, calculated
using the method we describe in our previous work.58,59 By fitting
the underlying k dependent correlation functions we produced a
plot of tD(k) which is shown in Fig. 3. At larger spatial scales (smaller
k = 2p/l) the relaxation is slower than at shorter scales (larger k).

Recently, Arbe et al. have measured the dynamic structure
factor of water, S(Q,o) using incoherent and coherent neutron
scattering in the GHz–THz frequency range and the intermediate
Q range (0.3–2.0 Å�1).11 They observe a structural relaxation

Fig. 1 The temperature dependence of Debye relaxation. Data taken
from Ellison (2007)69 and Nabokov (1988).17

Fig. 2 Imaginary part of the k-dependent transverse dielectric suscepti-
bility for a box of 10 000 TIP4P/2005 molecules at 300 K showing the
dispersion of the Debye peak.
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process at same frequency as the Debye peak in the dielectric
spectra. Assuming the two processes correspond, our result
(Fig. 3) is qualitatively consistent with their measurement of
tD(k) they derived from fitting a double exponential process to
F(Q,t), the intermediate incoherent scattering function for H
nuclei. Arbe et al. conclude that the k dependence indicates the
presence of translational diffusion, but is not consistent with an
interpretation in terms of a single diffusive motion, as in Agnom’s
model. They label the Debye mode as the ‘‘diffusive’’ model, and
the region of excess response is fit with a ‘‘local’’ Debye relaxation.
Arbe et al. also found that the ‘‘local’’ Debye relaxation does not
exhibit dispersion with k, (hence the name ‘‘local’’).11

A. Distance decomposition of the Debye relaxation

There are several ways to perform distance-dependent decom-
position of the Debye relaxation. The most intuitive way is to
break the simulation cell into sub-boxes of different sizes and
compute the total dipole moment for each sub-box. Dipole time
correlation functions are then computed separately for each
sub-box and averaged. The process is repeated for sub-boxes
of different sizes (Fig. 4). We find that the dipole relaxation
time does not converge to the bulk value until the box size is
increased to E2.0 nm.

We investigated two other methods of distance-decomposition.
In the first method, which we call the ‘‘dip-sphere’’ method,
one starts with the dipole–dipole time–correlation function:

fðtÞ ¼
X
i

lið0Þ �
X
j

ljðtÞ
* +

(10)

Then, one limits the molecules around each molecule i to those
in a sphere of radius R:

fdsðt;RÞ ¼
X
i

lið0Þ �
X
j2Ri

ljðtÞ
* +

(11)

The other method, which we call the ‘‘sphere–sphere’’
method, was introduced by Heyden, et al.72 The sphere–sphere
method is so-called because one calculates the autocorrelation
of the total dipole moment of a sphere of radius R centered
around a reference molecule, and then averages this over each
molecule in the system:

fssðt;RÞ ¼
X
i

ls
i ð0Þ � ls

i ðtÞ
� �

(12)

where:

lsðtÞ ¼ N iðtÞ
X
j2Ri

ljðtÞ (13)

Heyden et al. recommend the normalization factor N iðtÞ ¼
1þNij

2
� ��1=2 to normalize for number of molecules in each
sphere. This normalization factor is chosen so that in the bulk
limit (R - N) the original full response function is obtained.
Heyden et al. also propose introducing a smoothing function to
weight molecules within the sphere, which we neglect here for
simplicity.

Fig. 3 tD vs. k for a box of 10 000 TIP4P2005 water molecules.

Fig. 4 Debye relaxation calculated using the dipole grid method for
simulations of TIP4P/2005 water with different simulation box sizes.
Dipole grid box sizes of L E 2 nm are required for convergence.

Fig. 5 tD vs. R for a box of 10 000 TIP4P2005 water molecules using the
‘‘dip–sphere’’ and ‘‘sphere–sphere’’ methods.
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The results of these two types of decomposition are shown in
Fig. 5. The dielectric relaxation time increases up to about
1.5 nm. Interestingly, this is the maximum length scale we
found feasible for clusters in liquid water – beyond 1.5 nm
water–water interactions behave as in a dielectric continuum.55

A sphere of 1.5 nm contains approximately 470 water molecules.
Our results indicate that complexes of 100 s of molecules
participate in Debye relaxation. The two models that are most
consistent with this finding are the propagation of defects
model and the model of relaxing clusters.

VII. Fitting the high frequency excess

As mentioned, there is uncertainty and confusion on how to fit
and interpret the excess response on the high frequency side
of the Debye relaxation. There are many pitfalls when fitting
a dielectric spectra, especially when there there are many over-
lapping modes. When the underlying relaxation is described by
several overlapping modes or a distribution of relaxations and/or
damped harmonic oscillators, the number of parameters becomes
cumbersome or impossible for many fitting algorithms. More
importantly, the fitting becomes fundamentally under-defined –
many fits become consistent with the data, within the noise of
the data. Trying to fit a distribution of relaxation times G(t) to a
spectrum is an ill-defined problem, and attempts to do so can
yield peculiar results.20 Still, this type of fitting can be done
using Tichonov regularization, which enforces the distribution
to be smooth and prevents overfitting.87–91

Distinguishing the validity of various proposed dielectric
functions is difficult. Sheppard and Grant found that ‘‘. . . data
represented by a small departure from single relaxation time
behaviour (0.9 o a o 1 in eqn (1)) could be equally well
interpreted as being due to two distinct kinds of relaxation
process with relaxation times separated by a factor as high as
three.’’92 A similar point is made by Barker, who notes that a
single Debye mode is nearly indistinguishable from two closely
overlapping modes.93

Puzenko, et al. introduced the following dielectric function,94

eðoÞ ¼ f ½1þ f ðoÞ�
1þ iotDð Þb

þ e1

where

f ðoÞ ¼
0 ifoooc

AðotÞq ifo4oc

(
(14)

This function was recently used by Ishasi et al. to fit the high
frequency excess in water.9 A cutoff frequency oc is required,
since otherwise this expression violates the Kramers–Kronig
relations. In our experiments with this fit function, we found
this cutoff could be ignored. Putting the cutoff on at the center of
the Debye peak results in an unphysical discontinuity in the fit
function. As a power law, this fit corresponds to a flat distribution
of relaxation times in the hydrogen bond network. The interpreta-
tion of A and q in this fit function are not clear.

Under the defect-migration theory for Debye relaxation
introduced by Popov, et al., the Debye peak assumes the
following form:8

eðoÞ ¼ f

1þ iotdefectð Þ�1þ iotoscð Þ�d
h i�1 þ e1 (15)

This fit takes into account the high frequency wing, without the
need for the addition of one or two extra Debye relaxation
processes. Hidden in this dielectric function is a power law of
the form o�d, where 0 o d o 1.

A custom Python package called spectrumfitter was developed,
which is available at https://github.com/delton137/spectrumfitter
github.com/delton137/spectrumfitter or from the Python Package
Index. We started with the assumption that dielectric function has
N Debye relaxation processes and M damped harmonic oscillator
processes, and thus has the following form:

eðoÞ ¼
XN
i

fi

1þ iotDi
þ
XM
j

fjoTj
2

oTj
2 � o2 � iogj

þ e1 (16)

Fitting is performed with the ‘‘f-sum rule’’ enforced as a constraint:

eð0Þ � e1 ¼
X
i

fi (17)

where fi is the oscillator strength of the ith mode. We fit the
experimental refractive index data compiled by Segelstein (1981),
which comes from a compilation of all experimental sources of
dielectric function and index data that were available at the time.95

While dated, the Segelstein dataset has the benefit that it covers
the entire frequency range from 0.001–200 000 cm�1 The dielectric
permittivity is obtained from the complex index of refraction (n,k)
data using:

e0(o) = n2(o) � k2(o) e00(o) = 2n(o)k(o) (18)

We first did an interpolation of the Segelstein data on a
logarithmic grid up to 18 cm�1 and a linear grid from 18–4000 cm�1,
to prevent biasing the fitting towards the Debye mode. We
performed the fitting in an unbiased manor by minimizing the
sum of the relative errors squared:

Cost ¼
X
i

fiti � datai

datai

� �2

(19)

A. Using the gLST relation as a novel constraint

Any dielectric function should obey the Kramers–Kronig relations,
which is derived from the basic principle of causality (causes must
proceed effects). The f-sum rule (eqn (17)) comes from taking o = 0
in the Kramers–Kronig relations. Barker shows how a generalized
Lydanne–Sachs–Teller (LST) relation can also be derived from
the Kramers–Kronig relations.93 For a single damped harmonic
oscillator mode, the gLST relation is:

oL
2 þ gL

2
� �

oT
2

¼ eð0Þ
e1

(20)

The dampening factor appears in the numerator since the
longitudinal frequency is complex �oL = oL +i gL. The generalized
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LST relation for N Debye modes and M damped harmonic
oscillator modes reads:93

XN
i

tTi
tLi

XM
j

oLj
2 þ gLj

2
� �

oTj
2

¼ eð0Þ
e1

(21)

Barker’s exposition on the gLST equation suggests it can
help distinguish the validity of various fit functions, for
instance, whether one should fit with a single Debye relaxation
or two overlapping Debye relaxations.93 However, to do this,
one needs to work with the entire spectrum, so that all the
modes that contribute to e(0) can be accounted for.

We attempt to do this by first rearranging the dielectric
function given in eqn (16) into the following form:

eðoÞ ¼ e1
YN
i

o� ioLið Þ
o� ioTið Þ

YM
j

oLj
2 � o2 � iogj

oTj
2 � o2 � iogj

(22)

The longitudinal frequencies correspond to points where
e(o) = 0. Solving for the longitudinal frequencies requires
factoring a messy (N + 2M)th degree polynomial, which can
be done numerically. An easier alternative method is to simply
invert eqn (22)

1

eðoÞ ¼
1

e1

YN
i

o� ioTið ÞÞ
o� ioLið Þ

YM
j

oTj
2 � o2 � iogj

oLj
2 � o2 � iogj

(23)

By symmetry it should be easy to see that the dielectric function

for
1

eðoÞ has the same form as for e(o), but with the transverse

frequencies changed to the longitudinal frequencies. Thus, we

can do a separate fit of
1

eðoÞ using the same dielectric function

given in eqn (16) (with the change of e1 !
1

e1
) to obtain the

longitudinal frequencies.
This method of fitting allows us to try fitting with the gLST

equation as a novel constraint. Alternatively, one could use the
Kramers–Kronig relations directly as a constraint, but this
requires one has the entire spectrum available. Sometimes
the optimization process is not able to satisfy the gLST constraint.
Since the spectrumfitter code shows the contribution to the left
hand side of gLST equation (eqn (21)) from each lineshape, one
can often pinpoint features in the spectrum are problematic to
meeting the constraint.

B. Results of fitting f-sum and gLST constraints

We performed fitting with the f-sum rule and gLST equation as
constraints. The inclusion of the gLST equation as a constraint
did not significantly improve the quality of fit, but it did yield
some insights into the physicality of the fit functions being
used. Fig. 7 shows a fit with 3 Debye relaxations, 1 DHO peak
for H-bond stretching and 3 DHO peaks for the librational
region. Under this model, the LHS of the gLST relation here is
284 while the RHS is 48.15. The 2nd Debye relaxation contributes
a factor of 7.11 and the 3rd Debye relaxation contributes a
factor of 4.2 to the gLST relation. Next we gave the fitting fitting

procedure the option of suppressing the 3rd Debye relaxation.
It was completely suppressed in the transverse case ( f - 0),
suggesting that it is not physical. We found that if we tried to
include an additional DHO lineshape between 10 and 100 cm�1

for the H-bond bending peak it was also completely suppressed
by the fitting procedure.

We found a better fit can be obtained using the ‘‘Brendel’’
lineshape instead of a damped harmonic oscillator for the

Fig. 6 Example transverse (top) and longitudinal (bottom) fits and para-
meters. o0, g and s are all reported in cm�1. The fit contained 3 Debye
relaxations, 1 Brendel peak for H-bond stretching, and 3 Brendel peaks for
the librational region. The RMS error was 0.120.
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librational and stretching peaks. The Brendel lineshape is a
convolution of the DHO lineshape with Gaussian:96

eðoÞ ¼ 1ffiffiffiffiffiffi
2p
p

s

ð1
�1

e
� x�o0ð Þ2

2s2
op

2

x2 � o2 þ iog
þ e1 (24)

This lineshape can be calculated analytically in terms of complex
error functions, making it easy to evaluate numerically.96 We
found the Brendel lineshape especially helpful for fitting the

H-bond stretching peak at E150 cm�1. Fig. 6 shows a fit with 3
Debye relaxations, 2 Brendel peaks for H-bond stretching and
H-bond bending, and 3 Brendel peaks for the librational region.
To perform the gLST analysis with the Brendel peaks, we consider
the Brendel lineshape can be approximately factored into the
gLST equation as a single DHO. Then, the LHS of the gLST
relation is 456 while the RHS is 48.15. The 1st Debye relaxation
contributes a factor of 1.55 to the gLST relation, while the 2nd
Debye relaxation contributes a factor of 5.49 and the 3rd Debye
relaxation contributes a factor of 6.48.

In every type of fit we tried, inclusion of the 3rd Debye
relaxation resulted in a significantly larger departure from the
the gLST equation. If only 2 Debye relaxations are used in this
model, the gLST LHS becomes 21.921, while the RMS error
increases slightly from 0.120 to 0.125.

VIII. Conclusion

We critically reviewed the literature on the Debye relaxation and
the high frequency excess response and found widespread
disagreement on the molecular mechanisms underlying these
processes. We studied the distance decomposition of the Debye
relaxation, finding that it involves significant correlations
between molecules on scales of 1.5–2 nm. The k-dependence
of Debye relaxation suggests that Debye relaxation is a collective
process, and the dispersion relation of the Debye peak suggests
a propagating mode. Our findings call into question models of
Debye relaxation such as Agnom’s model,15 which related
Debye relaxation to rotation/translation after a hydrogen bond
breaks, and Buchner’s model, which related it to the rotation of
nearly free molecules.16

Using our spectrumfitter Python package we attempted
fitting experimental spectra with secondary and tertiary Debye
processes to model the high frequency excess. When we tried to
apply the gLST relation to our fitting we found that both the fits
with one secondary and an additional tertiary Debye process are
problematic. When the gLST relation is used as a constraint
with such fits, large violations must be incurred, especially
when the tertiary Debye process is included. Given the under-
standing of H-bond network dynamics that has been elucidated
by the work of many authors during the last few decades25,57,70,72

as well as in our recent work,58 we believe there is a wide
distribution of H-bond network modes which contribute in this
region. In light of this, the lack of agreement of values for t2 and
t3 reported in the previous literature (Table 1) is not surprising.
The narrow frequency windows of most experiments and failure
to unbias when fitting further contribute to the dispersion in
values.

The totality of our findings are consistent with the recent
model of Debye relaxation by Popov et al.,8 which posits that it
is caused by the movement of defects in the hydrogen bond
network. These defects are similar to the L and D Bjerrum
defects found in ice, but likely more smeared out.8 The existence
of such defects in liquid water, under the name of ‘‘bifuricated’’
H-bonds has already been established from X-ray scattering57

Fig. 7 Example transverse (top) and longitudinal (bottom) fits. o0 and g are
all reported in cm�1. The fit contained 3 Debye relaxations, 1 DHO peak for
H-bond stretching and 3 DHO peaks for the librational region. The RMS
error was 0.124.
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and simulation.41 The migration of these defects through the
H-bond network explains the semi-long range dependence we
found (E15 Å) as well as the dispersion of the Debye peak we
found from simulation and that was found in X-ray scattering
experiments.11 The migration of these defects is not purely
diffusive, but occurs due to hopping motions. The idea is
attractive in light of our recent work showing ice-like phonons
that propagate through the H-bond network.58 If the dynamics
of water are ice-like at the librational frequencies 400–800 cm�1,
then it is not surprising they are also ice-like at lower frequencies.
Dielectric relaxation in ice is almost perfectly described by a
single Debye relaxation, at least at high temperatures.24

According to the theory of Popov et al., the hopping motion
of a defect results in both translational and oscillatory motions
of water molecules, which cause vibrations in the H-bond network.
Under this assumption, and taking into account the power-law
vibrational dynamics of the H-bond network, Popov et al. are able
to derive the excess wing of the Debye relaxation.8 Thus we also see
that the theory of Popov et al. helps resolve the mystery of how a
single Debye peak arises from the heterogeneous (and fractal-like)
H-bond network. The heterogeneous and fractal-like nature of the
H-bond network does in fact appear in the spectrum, giving rise to
the excess response. In other words, the Debye peak in liquid
water is not a standard pure Debye peak, but is a Debye peak
whose high frequency side is modified by the presence of the
complex H-bond network.
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