
MSDE

REVIEW

Cite this: Mol. Syst. Des. Eng., 2019,

4, 828

Received 18th March 2019,
Accepted 22nd May 2019

DOI: 10.1039/c9me00039a

rsc.li/molecular-engineering

Deep learning for molecular design—a review of
the state of the art

Daniel C. Elton, †*a Zois Boukouvalas,ab Mark D. Fugea and Peter W. Chunga

In the space of only a few years, deep generative modeling has revolutionized how we think of artificial

creativity, yielding autonomous systems which produce original images, music, and text. Inspired by these

successes, researchers are now applying deep generative modeling techniques to the generation and opti-

mization of molecules—in our review we found 45 papers on the subject published in the past two years.

These works point to a future where such systems will be used to generate lead molecules, greatly reduc-

ing resources spent downstream synthesizing and characterizing bad leads in the lab. In this review we sur-

vey the increasingly complex landscape of models and representation schemes that have been proposed.

The four classes of techniques we describe are recursive neural networks, autoencoders, generative adver-

sarial networks, and reinforcement learning. After first discussing some of the mathematical fundamentals

of each technique, we draw high level connections and comparisons with other techniques and expose

the pros and cons of each. Several important high level themes emerge as a result of this work, including

the shift away from the SMILES string representation of molecules towards more sophisticated representa-

tions such as graph grammars and 3D representations, the importance of reward function design, the need

for better standards for benchmarking and testing, and the benefits of adversarial training and reinforce-

ment learning over maximum likelihood based training.

The average cost to bring a new drug to market is now well
over one billion USD,1 with an average time from discovery to
market of 13 years.2 Outside of pharmaceuticals the average
time from discovery to commercial production can be even
longer, for instance for energetic molecules it is 25 years.3 A
critical first step in molecular discovery is generating a pool
of candidates for computational study or synthesis and
characterization. This is a daunting task because the space of
possible molecules is enormous—the number of potential

drug-like compounds has been estimated to be between 1023

and 1060,4 while the number of all compounds that have
been synthesized is on the order of 108. Heuristics, such as
Lipinski's “rule of five” for pharmaceuticals5 can help narrow
the space of possibilities, but the task remains daunting.
High throughput screening (HTS)6 and high throughput vir-
tual screening (HTVS)7 techniques have made larger parts of
chemical space accessible to computational and experimental
study. Machine learning has been shown to be capable of
yielding rapid and accurate property predictions for many
properties of interest and is being integrated into screening
pipelines, since it is orders of magnitude faster than tradi-
tional computational chemistry methods.8 Techniques for
the interpretation and “inversion” of a machine learning
model can illuminate structure–property relations that have

828 | Mol. Syst. Des. Eng., 2019, 4, 828–849 This journal is © The Royal Society of Chemistry 2019

aDepartment of Mechanical Engineering, University of Maryland, College Park,

Maryland, 20740, USA. E-mail: daniel.elton@nih.gov
bDepartment of Mathematics and Statistics, American University, Washington,

D.C., 20016, USA

† Present address: National Institutes of Health Clinical Center, Bethesda,
Maryland, USA.

Design, System, Application

In this review we discuss the use of deep learning techniques to perform molecular generation and optimization, a new field which has proved to be a
fertile area for development in the past three years. The broad categories of techniques which we discuss are recursive neural networks, variational
autoencoders, generative adversarial networks, and reinforcement learning. These techniques can be used for generating a diverse set of leads for high
throughput screening. The latent spaces of generative models can be used for optimization of molecules when coupled with a property predicting module.
Alternatively, a pure reinforcement learning approach to optimization can be taken. The majority of work so far has been focused on drug design but there
are numerous other application areas now appearing in the literature such as metal organic frameworks, organic LEDs, organic solar cells, and energetic
materials. While currently genetic algorithms can often compete with deep learning based methods for molecular optimization, the field is rapidly
developing and there are many avenues open for improvement. The current literature points to a future where deep generative modeling techniques will
find utility not just for generating and optimizing molecules but also for materials and nanoscale systems.

http://crossmark.crossref.org/dialog/?doi=10.1039/c9me00039a&domain=pdf&date_stamp=2019-07-30
http://orcid.org/0000-0003-0249-1387

Mol. Syst. Des. Eng., 2019, 4, 828–849 | 829This journal is © The Royal Society of Chemistry 2019

been learned by the model which can in turn be used to
guide the design of new lead molecules.9,10 However even
with these new techniques bad leads still waste limited
supercomputer and laboratory resources, so minimizing the
number of bad leads generated at the start of the pipeline re-
mains a key priority. The focus of this review is on the use of
deep learning techniques for the targeted generation of mole-
cules and guided exploration of chemical space. We note that
machine learning (and more broadly artificial intelligence) is
having an impact on accelerating other parts of the chemical
discovery pipeline as well, via machine learning accelerated
ab initio simulation,8 machine learning based reaction pre-
diction,11,12 deep learning based synthesis planning,13 and
the development of high-throughput “self-driving” robotic
laboratories.14,15

Deep neural networks, which are often defined as net-
works with more than three layers, have been around for
many decades but until recently were difficult to train and
fell behind other techniques for classification and regression.
By most accounts, the deep learning revolution in machine
learning began in 2012, when deep neural network based
models began to win several different competitions for the
first time. First came a demonstration by Cireşan et al. of
how deep neural networks could achieve near-human perfor-
mance on the task of handwritten digit classification.16 Next
came groundbreaking work by Krizhevsky et al. which
showed how deep convolutional networks achieved superior
performance on the 2010 ImageNet image classification chal-
lenge.17 Finally, around the same time in 2012, a multitask
neural network developed by Dahl et al. won the “Merck

Daniel C. Elton

Dr. Daniel C. Elton received a B.
S. degree in physics from
Rensselaer Polytechnic Institute
in 2009 and a Ph.D. in physics
from Stony Brook University in
2016. He worked as a Postdoc-
toral Research Associate and
later an Assistant Research Sci-
entist at the University of Mary-
land, College Park between
2017–2019 where he focused on
applications of deep learning to
molecular design and discovery.
In January 2019 he moved to

work as a contractor Staff Scientist at the National Institutes of
Health. His current work focuses on applications of deep learning
and AI to detection and segmentation in medical images.

Zois Boukouvalas

Dr. Zois Boukouvalas received
his B.S. degree in Mathematics
from the University of Patras,
Greece, an M.S. degree in Ap-
plied and Computational Mathe-
matics from the Rochester Insti-
tute of Technology, and a Ph.D.
degree in Applied Mathematics
from University of Maryland Bal-
timore County in 2017. Since
2017 he has worked as a Post-
doctoral Research Associate at
the University of Maryland, Col-
lege Park, and in August 2019

he will start as an Assistant Professor in the Department of Math-
ematics and Statistics at American University. His research inter-
ests include blind source separation and machine learning for big
data problems.

Mark D. Fuge

Dr. Mark D. Fuge is an Assistant
Professor of Mechanical Engi-
neering at the University of
Maryland, College Park. His
staff and students study funda-
mental scientific and mathemati-
cal questions behind how
humans and computers can work
together to design better com-
plex engineered systems, from
the molecular scale to systems
as large as aircraft and ships, by
using tools from Applied Mathe-
matics and Computer Science.

He received his Ph.D. from UC Berkeley and has received a DARPA
Young Faculty Award, a National Defense Science and Engineering
Graduate Fellowship, and has prior/current support from NSF,
NIH, DARPA, ONR, and Lockheed Martin.

Peter W. Chung

Dr. Peter W. Chung is an Associ-
ate Professor in the Department
of Mechanical Engineering at
the University of Maryland in
College Park. He serves as the
Division Lead of the Mechanics,
Materials, and Manufacturing Di-
vision within the department and
is also the Lead of the Energetics
Group in the Center for Engineer-
ing Concepts Development.

MSDE Review

830 | Mol. Syst. Des. Eng., 2019, 4, 828–849 This journal is © The Royal Society of Chemistry 2019

Molecular Activity Challenge” to predict the molecular activi-
ties of molecules at 15 different sites in the body, beating out
more traditional machine learning approaches such as
boosted decision trees.18 One of the key technical advances
published that year and used by both Krizhevsky et al. and
Dahl et al. was a novel regularization trick called “drop-
out”.18,19 Another important technical advance was the effi-
cient implementation of neural network training on graphics
processing units (GPUs). By 2015 better hardware, deeper net-
works, and a variety of further technical advances had re-
duced error rates on the ImageNet challenge by a factor of 3
compared to the Krizhevsky's 2012 result.20

In addition to the tasks of classification and regression,
deep neural networks began to be used for generation of im-
ages, audio, and text, giving birth to the field of “deep gener-
ative modeling”. Two key technical advances in deep genera-
tive modeling were the variational autoencoder (Kingma et al.,
2013 (ref. 21)) and generative adversarial networks
(Goodfellow et al. 2014 (ref. 22)). The first work demonstrat-
ing deep generative modeling of molecules was the “molecu-
lar autoencoder” work of Gómez-Bombarelli et al. which
appeared on the arXiv in October 2016 and was published in
ACS Central Science in 2018.23 Since then, there has been an
explosion of advancements in deep generative modeling of
molecules using several different deep learning architectures
and many variations thereof, as shown in Table 2. In addition
to new architectures, new representation schemes, many of
which are graph based, have been introduced as alternatives
to the SMILES representation used by Gómez-Bombarelli
et al. The growing complexity of the landscape of architec-
tures and representations and the lack of agreement upon
standards for benchmarking and comparing different ap-
proaches has prompted us to write this review.

While much of the work so far has focused on deep gener-
ative modeling for drug molecules,24 there are many other
application domains which are benefiting from the applica-
tion of deep learning to lead generation and screening, such
as organic light emitting diodes,25 organic solar cells,26 ener-
getic materials,10,27 electrochromic devices,28 polymers,29

polypeptides,30–32 and metal organic frameworks.33,34

Our review touches on four major issues we have observed
in the field. The first is the importance and opportunities for
improvement by using different molecular representations.
Recent efforts have begun to depart from the use of simpli-
fied molecular-input line-entry system (SMILES) strings to-
wards representations that are “closer to the chemical struc-
ture” and offer improved chemical accuracy, such as graph
grammar based methods. The second issue is architecture se-
lection. We discuss the pros and cons underlying different
choices of model architecture and present some of their key
mathematical details to better illuminate how different ap-
proaches relate to each other. This leads us to highlight the
advantages of adversarial training and reinforcement learn-
ing over maximum likelihood based training. We also touch
on techniques for molecular optimization using generative
models, which has grown in popularity recently. The third

major issue is the approaches for quantitatively evaluating
different approaches for molecular generation and optimiza-
tion. Fourth, and finally, we discuss is reward function de-
sign, which is crucial for the practical application of methods
which use reinforcement learning. We contribute by offering
novel overview of how to engineer reward function to gener-
ate a set of leads which is chemically stable, diverse, novel,
has good properties, and is synthesizable.

There are reasons to be skeptical about whether today's
deep generative models can outperform traditional computa-
tional approaches to lead generation and optimization. Tradi-
tional approaches are fundamentally combinatorial in nature
and involve mixing scaffolds, functional groups, and frag-
ments known to be relevant to the problem at hand (for a re-
view, see Pirard et al.35). A naive combinatorial approach to
molecular generation leads to most molecules being unstable
or impossible to synthesize, so details about chemical bond-
ing generally must be incorporated. One approach is to have
an algorithm perform virtual chemical reactions, either from
a list of known reactions, or using ab initio methods for reac-
tion prediction.36 Another popular approach is to use genetic
algorithms with custom transformation rules which are
known to maintain chemical stability.37 One of the latest ge-
netic algorithm based approaches (“Grammatical Evolution”)
can match the performance of the deep learning approaches
for molecular optimization under some metrics.38 Deep gen-
erative modeling of molecules has made rapid progress in
just a few years and there are reasons to expect this progress
to continue, not just with better hardware and data, but due
to new architectures and approaches. For instance, generative
adversarial networks and deep reinforcement learning (which
may be combined or used separately) have both seen techni-
cal advancements recently.

1 Molecular representation

The molecular representation refers to the digital encoding
used for each molecule that serves as input for training the
deep learning model. A representation scheme must capture
essential structural information about each molecule. Creat-
ing an appropriate representation from a molecular structure
is called featurization. Two important properties that are de-
sirable (but not required) for representations are uniqueness

Table 1 Different representation schemes

Method Unique? Invertible?

3D Raw voxels ✗ ✓

Smoothed voxels ✗ ✓

Tensor field networks ✗ ✗

2D graph SMILES ✗ ✓

Canonical SMILES ✓ ✓

InChI ✓ ✓

MACCS keys ✓ ✗

Tensors ✗ ✓

Chemception images ✓ ✓

Fingerprinting ✓ ✗

MSDEReview

Mol. Syst. Des. Eng., 2019, 4, 828–849 | 831This journal is © The Royal Society of Chemistry 2019

and invertibility. Uniqueness means that each molecular
structure is associated with a single representation.

Invertibility means that each representation is associated
with a single molecule (a one-to-one mapping). Most

Table 2 For works that trained models separately on multiple datasets we report only the largest dataset used. Several of these datasets are described
in Table 3, which lists the major publicly available datasets. Other datasets are “HCEP”, the Harvard Clean Energy Project dataset of lead molecules for
organic photovoltaic, “PSC”, a dataset of monomer repeat units for polymer solar cells, “MCF-7”, a database of anti-cancer molecules, and “L1000”, a
database of molecules and gene expression profiles

Architecture Representation Ntrain Dataset(s) CitationĲs)

RNN SMILES 1 611 889 ZINC Bjerrum, 2017 (ref. 72)
RNN SMILES 541 555 ChEMBLa Gupta, 2017 (ref. 73)
RNN SMILES 350 419 DRD2 Olivecrona, 2017 (ref. 74)
RNN SMILES 1 400 000 ChEMBL Segler, 2017 (ref. 75)
RNN SMILES 250 000 ZINC Yang, 2017 (ref. 76)
RNN SMILES 200 000 ZINC Cherti, 2017 (ref. 77)
RNN SMILES 1 735 442 ChEMBL Neil, 2018 (ref. 78)
RNN SMILES 1 500 000 ChEMBL Popova, 2018 (ref. 79)
RNN SMILES 13 000 PubChemQC Sumita, 2018 (ref. 80)
RNN SMILES 541 555 ChEMBLa Merk, 2018 (ref. 81)
RNN SMILES 541 555 ChEMBLa Merk, 2018 (ref. 82)
RNN SMILES 509 000 ChEMBL Ertl, 2018 (ref. 83)
RNN SMILES 1 000 000 GDB-13 Arús-Pous, 2018 (ref. 84)
RNN SMILES 163 000 ZINC Zheng, 2019 (ref. 85)
RNN RG + SMILES 798 243 ChEMBL Pogány, 2018 (ref. 86)
RNN Graph operations 130 830 ChEMBL Li, 2018 (ref. 59)
VAE SMILES 249 000 ZINC/QM9 Gómez-Bombarelli, 2016 (ref. 23)
VAE SMILES 1 200 000 ChEMBL Blaschke, 2018 (ref. 87)
VAE SMILES 500 000 ZINC Lim, 2018 (ref. 88)
VAE SMILES 300 000 ZINC Kang, 2018 (ref. 89)
VAE SMILES 190 000 ZINC Harel, 2018 (ref. 90)
VAE SMILES 1 211 352 ChEMBL23 Sattarov, 2019 (ref. 91)
GVAE CFG (SMILES) 200 000 ZINC Kusner, 2017 (ref. 92)
GVAE CFG (custom) 3989 PSC Jørgensen, 2018 (ref. 26 and 93)
SD-VAE CFG (custom) 250 000 ZINC Dai, 2018 (ref. 58)
JT-VAE Graph operations 250 000 ZINC Jin, 2018 (ref. 94)
JT-VAE Graph operations 250 000 ZINC Jin, 2019 (ref. 95)
CVAE Graph 250 000 ZINC/CEPDB Liu, 2018 (ref. 96)
MHG-VAE Graph (MHG) 220 011 ZINC Kajino, 2018 (ref. 97)
VAE Graph 72 000 000 ZINC + PubChem Winter, 2018 (ref. 98)
VAE Graph 10 000 ZINC/QM9 Samanta, 2018 (ref. 99)
VAE Graph (tensors) 10 000 ZINC Samanta, 2018 (ref. 100)
VAE Graph (tensors) 250 000 ZINC/QM9 Simonovsky, 2018 (ref. 64)
CVAE Graph (tensors) 250 000 ZINC Ma, 2018 (ref. 101)
VAE 3D wave transform 48 000 000 ZINC Kuzminykh, 2018 (ref. 40)
CVAE 3D density 192 813 983 ZINC Skalic, 2019 (ref. 41)
VAE + RL MPNN + graph ops 133 885 QM9 Kearnes, 2019 (ref. 102)
GAN SMILES 5000 GBD-17 Guimaraes, 2017 (ref. 103)
GAN (ANC) SMILES 15 000 ZINC/CHEMDIV Putin, 2018 (ref. 104)
GAN (ATNC) SMILES 15 000 ZINC/CHEMDIV Putin, 2018 (ref. 105)
GAN Graph (tensors) 133 885 QM9 De Cao, 2018 (ref. 50 and 63)
GAN MACCS (166 bit) 6252 MCF-7 Kadurin, 2017 (ref. 70)
sGAN MACCS (166 bit) 20 000 L1000 Méndez-Lucio, 2017 (ref. 106)
CycleGAN Graph operations 250 000 ZINC Maziarka, 2019 (ref. 107)
AAE MACCS (166 bit) 6252 MCF-7 Kadurin, 2017 (ref. 69)
AAE SMILES 15 000 HCEP Sanchez-Lengeling, 2017 (ref. 108)
CCM-AAE Graph (tensors) 133 885 QM9 Grattarola, 2018 (ref. 109)
BMI SMILES 16 674 PubChem Ikebata, 2017 (ref. 110)
CAAE SMILES 1 800 000 ZINC Polykovskiy, 2018 (ref. 111)
GCPN Graph 250 000 ZINC You, 2018 (ref. 65)
Pure RL Graph n/a n/a Zhou, 2018 (ref. 66)
Pure RL Fragments n/a n/a Ståhl, 2019 (ref. 112)

Acronyms used are: AAE = adversarial autoencoder, ANC = adversarial neural computer, ATNC = adversarial threshold neural computer, BMI =
Bayesian model inversion, CAAE = constrained AAE, CCM-AAE = constant-curvature Riemannian manifold AAE, CFG = context free grammar,
CVAE = constrained VAE, ECC = edge-conditioned graph convolutions,71 GAN = generative adversarial network, GCPN = graph convolutional
policy network, GVAE = grammar VAE, JT-VAE = junction tree VAE, MHG = molecular hypergraph grammar, RG = reduced graph, RNN = recur-
rent neural network, sGAN = stacked GAN, SD-VAE = syntax-directed VAE, SSVAE = semi-supervised VAE, VAE = variational
autoencoder.a Filtered to isolate likely bioactive compounds.

MSDE Review

832 | Mol. Syst. Des. Eng., 2019, 4, 828–849 This journal is © The Royal Society of Chemistry 2019

representations used for molecular generation are invertible,
but many are non-unique. There are many reasons for non-
uniqueness, including the representation not being invariant
to the underlying physical symmetries of rotation, transla-
tion, and permutation of atomic indexes.

Another factor one should consider when choosing a repre-
sentation is the whether it is a character sequence or tensor.
Some methods only work with sequences, while others only
work with tensor. Sequences may be converted into tensors
using one-hot encoding. Another choice is whether to use a
representation based on the 3D coordinates of the molecule or
a representation based on the 2D connectivity graph. Mole-
cules are fundamentally three dimensional quantum mechani-
cal objects, typically visualized as consisting of nuclei with
well-defined positions surrounded by many electrons which
are described by a complex-valued wavefunction. Fundamen-
tally, all properties of a molecule can be predicted using quan-
tum mechanics given only the relative coordinates of the nu-
clei and the type and ionization state of each atom.
Equilibrium coordinates can be determined from the 2D
graph via energy minimization. This point may explain the
success of machine learning based property prediction at
predicting high level properties from 2D graphs, as opposed to
3D structures.8,27,39 In so much as properties are related to
equilibrium structure, machine learning infers this from the
2D graph. In this section, we review both 3D and 2D represen-
tation schemes that have been developed recently (Table 1).

1.1 Representations of 3D geometry

Trying to implement machine learning directly with nuclear
coordinates introduces a number of issues. The main issue is
that coordinates are not invariant to molecular translation,
rotation, and permutation of atomic indexing. While ma-
chine learning directly on coordinates is possible, it is much

better to remove invariances to create a more compact repre-
sentation (by removing degrees of freedom) and develop a
scheme to obtain a unique representation for each molecule.
One approach that uses 3Dcoordinates uses a 3D grid of
voxels and specifies the nuclear charge contained within each
voxel, thus creating a consistent representation. Nuclear
charge (i.e. atom type) is typically specified by a one-hot vec-
tor of dimension equal to the number of atom types in the
dataset. This scheme leads to a very high dimensional sparse
representation, since the vast majority of voxels will not con-
tain a nuclear charge. While sparse representations are con-
sidered desirable in some contexts, here sparsity leads to very
large training datasets. This issue can be mitigated via spatial
smoothing (blurring) by placing spherical Gaussians or a set
of decaying concentric waves around each atomic nuclei.40 Al-
ternatively, the van der Waals radius may be used.41 Amidi
et al. use this type of approach for predictive modeling with
3D convolutional neural networks (CNNs),42 while
Kuzminykh et al. and Skalic et al. use this approach with a
CNN-based autoencoder for generative modeling.40,41

Besides high dimensionality and sparsity, another issue
with 3D voxelized representations is they do not capture in-
variances to translation, rotation, and reflection, which are
hard for present-day deep learning based architectures to
learn. Capturing such invariances is important for property
prediction, since properties are invariant to such transforma-
tions. It is also important for creating compact representa-
tions of molecules for generative modeling. One way to deal
with such issues is to always align the molecular structure
along a principal axis as determined by principle component
analysis to ensure a unique orientation.40,42 Approaches
which generate feature vectors from 3D coordinates that are
invariant to translation and rotation are wavelet transform in-
variants,43 solid harmonic wavelet scattering transforms,44

and tensor field networks.45 All of these methods incur a loss

Table 3 Some publicly available datasets

Dataset Description N URL/citation

GDB-13 Combinatorially generated library 977 468 314 http://gdb.unibe.ch/downloads/113

ZINC15 Commercially available compounds >750 000 000 http://zinc15.docking.org114

GDB-17 Combinatorially generated library 50 000 000 http://gdb.unibe.ch/downloads/115

eMolecules Commercially available compounds 18 000 000 https://reaxys.emolecules.com/
SureChEMBL Compounds obtained from chemical patents 17 000 000 https://www.surechembl.org/search/
PubChemQC Compounds from PubChem with property data from

quantum chemistry (DFT) calculations
3 981 230 http://pubchemqc.riken.jp/116

ChEMBL A curated database of bioactive molecules 2 000 000 https://www.ebi.ac.uk/chembl/
SuperNatural A curated database of natural products 2 000 000 http://bioinformatics.charite.de/supernatural/
QM9 Stable small CHONHF organic molecules taken from GDB-17

with properties calculated from ab initio density functional theory
133 885 http://quantum-machine.org/datasets/117

BNPAH B, N-substituted polycyclic aromatic hydrocarbons with properties
calculated from ab initio density functional theory

33 000 https://moldis.tifrh.res.in/datasets.html118

DrugBank FDA drugs and other drugs available internationally 10 500 https://www.drugbank.ca/
Energetics Energetic molecules and simulation data collected from public

domain literature
417 https://git.io/energeticmols27

HOPV15 Harvard organic photovoltaic dataset 350a https://figshare.com/articles/HOPV15_
Dataset/1610063/4 (ref. 119)

a Also contains numerous conformers for each molecule, for a total of 4855 structures.

MSDEReview

http://gdb.unibe.ch/downloads/
http://zinc15.docking.org
http://gdb.unibe.ch/downloads/
https://reaxys.emolecules.com/
https://www.surechembl.org/search/
http://pubchemqc.riken.jp/
https://www.ebi.ac.uk/chembl/
http://bioinformatics.charite.de/supernatural/
http://quantum-machine.org/datasets/
https://moldis.tifrh.res.in/datasets.html
https://www.drugbank.ca/
https://git.io/energeticmols
https://figshare.com/articles/HOPV15_Dataset/1610063/4
https://figshare.com/articles/HOPV15_Dataset/1610063/4

Mol. Syst. Des. Eng., 2019, 4, 828–849 | 833This journal is © The Royal Society of Chemistry 2019

of information about 3D structure and are not easy to invert,
so their utility for generative modeling may be limited (deep
learning models learn to generate these representations, but
if they cannot be unambiguously related to a 3D structure
they are not very useful). Despite their issues with
invertibility, tensor field networks have been suggested to
have utility for generative modeling since it was shown they
can accurately predict the location of missing atoms in mole-
cules where one atom was removed.45 We expect future work
on 3D may proceed in the direction of developing invertible
representations that are based on the internal (relative) coor-
dinates of the molecule.

1.2 Representations of molecular graphs

1.2.1 SMILES and string-based representations. Most gen-
erative modeling so far has not been done with coordinates
but instead has worked with molecular graphs. A molecule
can be considered as an undirected graph with a set of
edges and set of vertices . The obvious disadvantage of
such graphs is that information about bond lengths and 3D
conformation is lost. For some properties one may wish to
predict, the specific details of a molecule's 3D conformations
may be important. For instance, when packing in a crystal or
binding to a receptor, molecules will find the most energeti-
cally favorable conformation, and details of geometry often
have a big effect. Despite this, graph representations have
been remarkably successful for a variety of generative model-
ing and property prediction tasks. If a 3D structure is desired
from a graph representation, molecular graphs can be em-
bedded in 3D using distance geometry methods (for instance
as implemented in the OpenBabel toolkit46,47). After coordi-
nate embedding, the most energetically favorable conforma-
tion of the molecule can be obtained by doing energy mini-
mization with classical force fields or quantum mechanical
simulation.

There are several ways to represent graphs for machine
learning. The most popular way is the SMILES string repre-
sentation.48 SMILES strings are a non-unique representation
which encode the molecular graph into a sequence of ASCII
characters using a depth-first graph traversal. SMILES are typ-
ically first converted into a one-hot based representation.
Generative models then produce a categorical distribution for
each element, often with a softmax function, which is sam-
pled. Since standard multinomial sampling procedures are
non-differentiable, sampling can be avoided during training
or a Gumbel-softmax can be used.49,50

Many deep generative modeling techniques have been de-
veloped specifically for sequence generation, most notably re-
current neural networks (RNNs), which can be used for
SMILES generation. The non-uniqueness of SMILES arises
from a fundamental ambiguity about which atom to start the
SMILES string construction on, which means that every mole-
cule with N heavy (non-hydrogen) atoms can have at least N
equivalent SMILES string representations. There is additional
non-uniqueness due to different conventions on whether to

include charge information in resonance structures such as
nitro groups and azides. The MolVS51 or RDKit52

cheminformatics packages can be used to standardize
SMILES, putting them in a canonical form. However, Bjerrum
et al. have pointed out that the latent representations
obtained from canonical SMILES may be less useful because
they become more related to specific grammar rules of ca-
nonical SMILES rather than the chemical structure of the un-
derlying molecule.53 This is considered an issue for interpre-
tation and optimization since it is better if latent spaces
encode underlying chemical properties and capture notions
of chemical similarity rather than SMILES syntax rules.
Bjerrum et al. have suggested SMILES enumeration (training
on all SMILES representations of each molecule), rather than
using canonical SMILES, as a better solution to the non-
uniqueness issue.53,54 An approach similar to SMILES enu-
meration is used in computer vision applications to obtain
rotational invariance—image datasets are often “augmented”
by including many rotated versions of each image. Another
approach to obtain better latent representations explored by
Bjerrum et al. is to input both enumerated SMILES and
Chemception-like image arrays (discussed below) into a sin-
gle “heteroencoder” framework.53

In addition to SMILES strings, Gómez-Bombarelli et al.
have tried InChI strings55 with their variational autoencoder,
but found they led to inferior performance in terms of the
decoding rate and the subjective appearance of the molecules
generated.23 Interestingly, Winter et al. show that more physi-
cally meaningful latent spaces can be obtained by training a
variational autoencoder to translate between InChI to
SMILES.56 There is an intuitive explanation for this—the
model must learn to extract the underlying chemical struc-
tures which are encoded in different ways by the two
representations.

SMILES based methods often struggle to achieve a high
percentage of valid SMILES. As a possible solution to this,
Kusner et al. proposed decomposing SMILES into a sequence
of rules from a context free grammar (CFG).57 The rules of
the context-free grammar impose constraints based on the
grammar of SMILES strings.58 Because the construction of
SMILES remains probabilistic, the rate of valid SMILES gener-
ation remains below 100%, even when CFGs are employed
and additional semantic constraints are added on top.58 De-
spite the issues inherent with using SMILES, we expect it will
continue to a popular representation since most datasets
store molecular graphs using SMILES as the native format,
and since architectures developed for sequence generation
(i.e. for natural language or music) can be readily adopted.
Looking longer term, we expect a shift towards methods
which work directly with the graph and construct molecules
according to elementary operations which maintain chemical
valence rules.

Li et al. have developed a conditional graph generation
procedure which obtains a very high rate of valid chemical
graphs (91%) but lower negative log likelihood scores com-
pared to a traditional SMILES based RNN model.59 Another

MSDE Review

834 | Mol. Syst. Des. Eng., 2019, 4, 828–849 This journal is © The Royal Society of Chemistry 2019

more recent work by Li et al. uses a deep neural network to
decide on graph generation steps (append, connect, or termi-
nate).60 Efficient algorithms for graph and tree enumeration
have been previously developed in a more pure computer sci-
ence context. Recent work has looked at how such techniques
can be used for molecular graph generation,61 and likely will
have utility for deep generative models as well.

1.2.2 Image-based representations. Most small molecules
are easily represented as 2D images (with some notable ex-
ceptions like cubane). Inspired by the success of Google's
Inception-ResNet deep convolutional neural network (CNN)
architecture for image recognition, Goh et al. developed
“Chemception”, a deep CNN which predicts molecular prop-
erties using custom-generated images of the molecular
graph.62 The Chemception framework takes a SMILES string
in and produces an 80 × 80 greyscale image which is actu-
ally an array of integers, where empty space is ‘0’, bonds
are ‘2’ and atoms are represented by their atomic number.62

Bjerrum et al. extend this idea, producing “images” with
five color channels which encode a variety of molecular fea-
tures, some which have been compressed to few dimensions
using PCA.53

1.2.3 Tensor representations. Another approach to storing
the molecular graph is to store the vertex type (atom type),
edge type (bond type), and connectivity information in
multidimensional arrays (tensors). In the approach used by
de Cao & Kipf,50,63 each atom is a vertex vi ∈ which may
be represented by a one-hot vector xi ∈ {0, 1}|| which indi-
cates the atom type, out of || possible atom types. Each
bond is represented by an edge (vi, vj) which is associated
with a one-hot vector yi ∈ {0, 1}Y representing the type of
bond out of Y possible bond types. The vertex and edge infor-
mation can be stored in a vertex feature matrix X = [x1,…,
xN]

T ∈ N×|| and an adjacency tensor A ∈ N×N×Y where Aij
∈ Y. Simonovsky et al.64 use a similar approach—they take
a vertex feature matrix X and concatenate the adjacency ten-
sor A with a traditional adjacency matrix where connections
are indicated by a ‘1’. As with SMILES, adjacency matrices
suffer from non-uniqueness—for a molecule with N atoms,
there are N! equivalent adjacency matrices representing the
same molecular graph, each corresponding to a different re-
ordering of the atoms/nodes. This makes it challenging to
compute objective functions, which require checking if two
adjacency matrix representations correspond to the same
underlying graph (the “graph isomorphism” problem, which
takes N4 operations in the worse case). Simonovsky et al. use
an approximate graph matching algorithm to do this, but it
is still computationally expensive.

1.2.4 Other graph-based representations. Another ap-
proach is to train an RNN or reinforcement learning agent to
operate directly on the molecular graph, adding new atoms
and bonds in each action step from a list of predefined possi-
ble actions. This approach is taken with the graph
convolutional policy network65 and in recent work using pure
deep reinforcement learning to generate molecules.66 Be-
cause these methods work directly on molecular graphs with

rules which ensure that basic atom valence is satisfied, they
generate 100% chemically valid molecules.

Finally, when limited to small datasets one may elect to
do generative modeling with compact feature vectors based
on fingerprinting methods or descriptors. There are many
choices (Coulomb matrices, bag of bonds, sum over bonds,
descriptor sets, graph convolutional fingerprints, etc.) which
we have previously tested for regression,27,67 but they are gen-
erally not invertible unless a very large database with a look-
up table has been constructed (in this context, by invertible
we mean the complete molecular graph can be reconstructed
without loss). As an example of how it may be done, Kadurin
et al. use 166 bit Molecular ACCess System (MACCS) keys68

for molecular representation with adversarial
autoencoders.69,70 In MACCS keys, also called MACCS finger-
prints, each bit is associated with a specific structural pattern
or question about structure. To associate molecules to MACCS
keys one must search for molecules with similar or identical
MACCS keys in a large chemical database. Fortunately several
large online chemical databases have application programming
interfaces (APIs) which allow for MACCS-based queries, for in-
stance PubChem, which contains 72 million compounds.

2 Deep learning architectures

In this section we summarize the mathematical foundations
of several popular deep learning architectures and expose
some of their pros and cons. High level diagrams of the ma-
jor architectures are shown in Fig. 1. A basic familiarity with
machine learning concepts is assumed.

2.1 Recurrent neural networks (RNNs)

We discuss recurrent neural network sequence models first
because they are fundamental to molecular generation—most
VAE and GAN implementations include an RNN for sequence
generation. In what follows, a sequence of length T will be
denoted as S1:T = (S1,…, ST), ST ∈ , where is the set of to-
kens, also called the vocabulary. For the purpose of this sec-
tion we assume the sequences in question are SMILES
strings, as they are by far the most widely used. As discussed
previously in the context of SMILES the “tokens” are the dif-
ferent characters which are used to specify atom types, bond
types, parentheses, and the start and stop points of rings.
The first step in sequence modeling is typically one-hot
encoding of the sequence's tokens, in which each token is
represented as a unique N dimensional vector where one ele-
ment is 1 and the rest are 0 (where N is the number of tokens
in the vocabulary).

Recurrent neural networks (RNNs) are the most popular
models for sequence modeling and generation. We will not
go into detail of their architecture, since it is well described
elsewhere.120,121 An important detail to note however is that
the type of RNN unit that is typically used for generating mol-
ecules is either the long short term memory (LSTM) unit,122

or a newer more computationally efficient variant called the

MSDEReview

Mol. Syst. Des. Eng., 2019, 4, 828–849 | 835This journal is © The Royal Society of Chemistry 2019

gated recurrent unit (GRU).123 Both LSTMs and GRUs contain
a memory cell which alleviates the exploding and vanishing
gradient problems that can occur when training RNNs to pre-
dict long-term dependencies.122,123

Sequence models are often trained to predict just a single
missing token in a sequence, as trying to predict more than
one token leads to a combinatorial explosion of possibilities.
Any machine learning model trained to predict the next char-
acter in an input sequence can be run in “generative mode”
or “autoregressive mode” by concatenating the predicted to-
ken to the input sequence and feeding the new sequence
back into the model. However, this type of autoregressive
generation scheme typically fails because the model was
trained to predict on the data distribution and not its own
generative distribution, and therefore each prediction con-
tains at least a small error. As the network is run recursively,
these errors rapidly compound, leading to rapid degradation
in the quality of the generated sequences. This problem is
known as “exposure bias”.124 The Data as Demonstrator
(DaD) algorithm tries to solve the problem of exposure bias
by running a model recursively during training and compar-
ing the output to the training data during training.125 DaD
was extended to sequence generation with RNNs by Bengio
et al., who called the method “scheduled sampling”.126 While
research continues in this direction, issues have been raised
about the lack of a firm mathematical foundation for such
techniques, with some suggesting they do not properly ap-
proximate maximum likelihood.127

Better generative models can be obtained by training
using maximum likelihood maximization on the sequence
space rather than next-character prediction. In maximum
likelihood training a model πθ parametrized by θ is trained
with the following differentiable loss:

L s S
s Z t

T

T T
MLE

2
1 1log (1)

Here Z is the set of training sequences which are assumed
to each be of length T. This expression is proportional to
the negative cross entropy of the model distribution and
the training data distribution (maximizing likelihood is
equivalent to minimizing cross entropy). MLE training can
be done with standard gradient descent techniques and
backpropagation through time to compute the gradient of
the loss. In practice though this type of training fails to
generate valid SMILES, likely because of strict long term de-
pendencies such as closing parentheses and rings. The
“teacher forcing” training procedure128 is an important in-
gredient which was found to be necessary to include in the
molecular autoencoder VAE to capture such long term de-
pendencies—otherwise the generation rate of valid SMILES
was found to be near 0%.129 In teacher forcing, instead of
sampling from the model's character distribution to get the
next character, the right character is given directly to the
model during training.121

Fig. 1 Bird's eye views of three popular frameworks for generative modeling using SMILES strings, with possible variations shown with dashed
lines.

MSDE Review

836 | Mol. Syst. Des. Eng., 2019, 4, 828–849 This journal is © The Royal Society of Chemistry 2019

In the context of SMILES strings generation, to generate
each character the output layer usually gives probabilities pi
for every possible SMILES string token. When running in
generative mode, the typical method is to use a multino-
mial sampler to sample this distribution, while in training
mode one typically just chooses the token with the highest
probability. Using a multinomial sampler captures the
model's true distribution, but because MLE training tends
to focus on optimizing the peaks of the distribution and
doesn't always capture the tails of distributions well. So
called “thermal” rescaling can be used to sample further
away from the peaks of the distribution by rescaling the
probabilities as:

pi
p
T

p
T

i

i

i

new

exp

exp (2)

where T is a sampling temperature. Alternatively, if a
softmax layer is used to generate the final output of a neu-
ral network, a temperature parameter can be built directly
into it. Another alternative is the “freezing function”:

p p
p

i
i

i
i

T

T

new

1

1 (3)

Sampling at low T leads to the generation of molecules
which are only slight variations on molecules seen in the
training data. Generation at high T leads to greater diversity
but also higher probability of nonsensical results.

2.1.1 Optimization with RNNs using reinforcement learn-
ing. Neil et al. introduced a simple method for repeated MLE
which biases generation towards molecules with good proper-
ties, which they call HillClimb-MLE.78 Starting with a model
that has been trained via MLE on the training data, they gen-
erate a large set of SMILES sequences. They then calculate a
reward function RĲS) for each sequence S generated and find
the subset of N′ generated molecules with the highest re-
wards. This subset is used to retrain the model with MLE,
and the process is repeated. Each time a new subset of N′
generated molecules is determined, it is concatenated on the
previous set, so the amount of data being used for MLE
grows with each iteration. As this process is repeated the
model begins to generate molecules which return higher and
higher values from RĲS).

A more common technique is to use reinforcement learning
after MLE pretraining to fine tune the generator to produce
molecules with high reward. The problem of sequence gener-
ation can be recast as a reinforcement learning problem with
a discrete action space. At each timestep time t, the current
state of the “environment” is the sequence generated so far is
(s0,..., st) and the action a is next token to be chosen, a = st+1.
The goal of reinforcement learning is to maximize the
expected return GT for all possible start states s0. The return

function G RT i
i t

T

 simply sums the rewards over the length

of time the agent is active, which is called an episode. Mathe-
matically the optimization problem reinforcement learning
tries to solve is expressed as:

max ()

 J G sT E 0 (4)

where θ are the parameters of the model. In our case, one ep-
isode corresponds to the generation of one molecule, there is
only one start state, (the ‘GO’ character) and RT = 0 until the
end-of-sequence (‘EOS’) token is generated or the max string
length is reached. If T denotes the max length of the SMILES
string then only RT is non-zero and therefore GT = RT for all

T. The state transition is deterministic (i.e. ps s
a
, 1 for the

next state S1:T+1 if the current state is S1:T and the action a =

st+1, while for other states s″, ps s
a
, 0). Because of these sim-

plifications, eqn (4) assumes a simple form:

J R a sT
t

T

t t

0

(5)

Here the policy model πθ(a|s) gives the probability for choos-
ing the next action given the current state. In our case:

πθ(at|st) = πθ(st + 1|S1:T) (6)

There are many reinforcement learning methods, but
broadly speaking they can be broken into value learning and
policy learning methods. Most work so far has used variants
of the REINFORCE algorithm,130 a type of policy learning
method which falls into the class of policy gradient methods.
It can be shown that for a run of length T the gradient of JĲθ)
(eqn (4)) is:

J G
a y
a yT

t t

t t

E 1 1

1 1

(7)

Computing the exact expectation of GT for all possible ac-
tion sequences is impossible, so instead the GT from a single
run is used before each gradient update. This is sometimes
referred to as a “Monte-Carlo” type approach. Fortunately,
this process can be parallelized by calculating multiple gradi-
ent updates on different threads before applying them. Neil
et al. recently tested several newer reinforcement learning al-
gorithms—advantage actor-critic (AAC) and proximal policy
optimization (PPO), where they report superior performance
over REINFORCE (PPO > AAC > REINFORCE). Interestingly,
they find Hillclimb-MLE is competitive with and occasionally
superior to PPO.78

Olivecrona et al. argue that policy learning methods are a
more natural choice for molecular optimization because they
can start with a pre-trained generative model, while value-
function learning based methods cannot.74 Additionally,
most policy learning methods have been proven to lead to an
optimal policy and the resulting generative models are faster

MSDEReview

Mol. Syst. Des. Eng., 2019, 4, 828–849 | 837This journal is © The Royal Society of Chemistry 2019

to sample.74 In contrast, Zhou et al. argue that value function
learning methods are superior in part because policy gradient
methods suffer from issues with high variance in the gradi-
ent estimates during training.66

Empirically it has been found that using RL after MLE can
cause the generated model to “drift” too far, causing impor-
tant information about viable chemical structures learned
during MLE to be lost. This can take the form of highly un-
stable structures being generated or invalid SMILES. One so-
lution is to “augment” the reward function with the
likelihood:74,131

R′(S) = [σR(S) + log Pprior(S) − log Pcurrent(S)]
2 (8)

Other possibilities are explored by Olivecrona et al.74

Fundamentally, whether “drift” during RL training becomes
an issue depends on the details of the reward function—if
the reward function is good, drift should be in a good direc-
tion. Recently Zhou et al. sought approaches that circum-
vent MLE when training. In their RL based approach for
molecular optimization, they do not use an RNN or any pre-
trained generative model and instead use pure RL train-
ing.66 The RL agent works directly on constructing molecu-
lar graphs, taking actions such as atom/bond addition and
atom removal. The particular approach they use is deep-Q
learning, which incorporates several recent innovations that
were developed at DeepMind and elsewhere.132 Jaques et al.
have also explored the application of deep Q-learning and
G-learning to molecular optimization.131 Reinforcement
learning is a rapidly developing field, and there remain
many recent advancements such as new attention mecha-
nisms which have not yet been tested in the domain of mo-
lecular optimization.

To give a flavor of what applications have been demon-
strated, we will briefly present some representative works
using RNNs. Bjerrum & Threlfall explore using an architec-
ture consisting of 256 LSTM cells followed by a “time-
distributed dense” output layer.72 Their network achieved a
SMILES validity rates of 98% and the property distributions
for the properties tested matched the property distributions
found in the training data (some key properties they looked
at were synthetic accessibility score, molecular weight, log P,
and total polar surface area). Popova et al. have shown how
an RNN trained for generation can be further trained with
reinforcement learning to generate molecules targeted to-
wards a specific biological function - in their case they fo-
cused on the decree to which molecules bind and inhibit
the JAK2 enzyme, for which much empirical data exists.
They showed how their system could be used to either max-
imize or minimize inhibition with JAK2 and also indepen-
dently discovered 793 commercially available compounds
found in the ZINC database.79 In a similar vein, Segler
et al. fine tune an RNN to generate a “focused library” of
molecules which are likely to target the 5-HT2A receptor.75

Finally, Olivecrona et al. show how a generative model can
be fine tuned to generate analogs of a particular drug

(Celecoxib) or molecules which bind to the type 2 dopamine
receptor.74

2.2 Autoencoders

In 2006 Hinton and Salakhutdinov showed how advances in
computing power allowed for the training of a deep
autoencoder which was capable of beating other methods
for document classification.133 The particular type of neural
network they used was a stack of restricted Boltzmann ma-
chines, an architecture which would later be called a “deep
Boltzmann machine”.134 While deep Boltzmann machines
are theoretically powerful, they are computationally expen-
sive to train and impractical for many tasks. In 2013
Kingma et al. introduced the variational autoencoder
(VAE),21 which was used in 2016 by Bombarelli et al. to cre-
ate the first machine learning based generative model for
molecules.23

2.2.1 Variational autoencoders (VAEs). VAEs are derived
mathematically from the theory of variational inference and
are only called autoencoders because the resulting architec-
ture has the same high level structure as a classical
autoencoder. VAEs are fundamentally a latent variable model
pĲx,z) = pθ(x|z)pĲz) which consists of latent variables z drawn
from a pre-specified prior pĲz) and passed into a decoder
pθ(x|z) parametrized by parameters θ. To apply maximum
likelihood learning to such a model we like to maximize the
probability of each observed datapoint

p p px x z z z d for all datapoints in our training

data. However for complicated models with many parameters
θ (like neural networks) this integral is intractable to com-
pute. The method of variational inference instead maximizes
a lower bound on logpĲx):

log logp
p p
qqx
x z z

xz z x

 E

 z
(9)

where qϕĲz|x) is an estimate of posterior distribution pĲz|x) =
pθ(x|z)pĲz)/pĲx). The right hand side of eqn (9) is called the
“negative variational free energy” or “evidence lower bound”
(ELBO) and can be written as:

ℒθ,ϕ(x) = z∼qϕ(z|x)[logpθ(x)] − DKL(qϕ(z|x),pθ(z|x)) (10)

Here we encounter the Kullback–Leibler (KL) divergence:

D q p q
q
pKL dz z z
z
z
z

 log (11)

After several manipulations, eqn (10) can be written as

L

, log

log

x z x z xz z x

z z x

E

E

q

q

p H q

p x z z x z D q pKL

(12)

MSDE Review

838 | Mol. Syst. Des. Eng., 2019, 4, 828–849 This journal is © The Royal Society of Chemistry 2019

where H is the (differentiable) entropy. The loss function for
the variational autoencoder for examples x in our training
dataset Z is:

L
Z

 L x
x

(13)

In a VAE, during training first qϕĲz|x) (the encoder) gener-
ates a z. Then the decoder pθ(x|z) model attempts to recover
x. Training is done using backpropagation and the loss func-
tion (eqn (13)) which tries to maximize (x,θ,ϕ). This corre-
sponds to maximizing the chance of reconstruction pθ(x|z)
(the first term) but also minimizing the KL-divergence
between qϕĲz|x) and the prior distribution pĲz). Typically the
prior is chosen to be a set of independent unit normal distri-
butions and the encoder is assumed to be a factorized
multidimensional normal distribution:

p I

q

z z

z x z x x

N

N

0
2

 diag
(14)

The encoder qθ(z|x) is typically a neural network with pa-
rameters ϕ used to find the mean and variance functions in
(z,μ(x), diagĲσ2Ĳx))). The resulting “Gaussian VAE” has the
advantage that the KL-divergence can be computed analyti-
cally. The parameters θ and ϕ in the decoder and encoder are
all learned via backpropagation. There are several important
innovations which have been developed to streamline
backpropagation and training which are described in detail
elsewhere.21,121,135

There are several reasons that variational autoencoders
perform better than classical autoencoders. Since the latent
distribution is probabilistic, this introduces noise which intu-
itively can be seen as a type of regularization that forces the
VAE to learn more robust representations. Additionally, speci-
fying that the latent space must be a Gaussian leads to a
much smoother latent space which makes optimization
much easier and also leads to fewer “holes” in the distribu-
tion corresponding to invalid or bad molecules. VAEs there-
fore are useful for interpolation between points correspond-
ing to molecules in the training data.

In the molecular autoencoder of Gómez-Bombarelli et al.
each SMILES x is converted to a one-hot representation and a
convolutional neural network is used to find the parameters
of the Gaussian distribution qϕĲz|x).

23 The decoder in the mo-
lecular autoencoder is an RNN, but in contrast to pure RNN
models, where high rates of valid SMILES generation have
been reported (94–98%),72,75,78 the molecular autoencoder
generates far fewer valid SMILES. The valid SMILES rate was
found to vary greatly between ≈75% for points near known
molecules to only 4% for randomly selected latent points.23

Kusner et al. report an average valid decoding rate of only
0.7% using a similar VAE architecture.57 These low decoding
rates are not a fatal issue however simply because a validity
checker (such as found in RDKit) can easily be used to throw

out invalid SMILES during generation. However, the low rate
of validity suggests fundamental issues in quality of the
learned latent representation. As mentioned previously,
higher rates of SMILES validity have been achieved by
representing SMILES in terms of rules from a context-free
grammar (CFG).57,58 Kusner et al. achieved somewhat higher
rates of SMILES generation using a CFG (7.2%, as described
in the supplementary information of Kusner et al.57). Further
work by Dai et al. added additional “semantic” constraints
on top of a CFG yielding a higher rate of valid SMILES
(43.5%).58 Janz et al. recently proposed using Bayesian active
learning as a method of forcing models to learn what makes
a sequence valid, and incorporating this into RNNs in VAEs
could lead to higher valid decoding rates.136

2.2.2 Adversarial autoencoders (AAEs). Adversarial
autoencoders are similar to variational autoencoders, but dif-
fer in the means by which they regularize the latent distribu-
tion by forcing it to conform to the prior pĲz).137 Instead of
minimizing KL-divergence metric to enforce the generator to
output a latent distribution corresponding to a prespecified
prior (usually a normal distribution), they use adversarial
training with a discriminator D whose job is to distinguish
the generator's latent distribution from the prior. The dis-
criminator outputs a probability p ∈ (0, 1) which predicts the
probability samples it sees are from the prior. The objective
of the discriminator is maximize the following:

adv = x∼pd[logD(qΘ(z|x))] + x∼pz[log(1 − D(z))] (15)

The overall objective function for the AAE to minimize can
be expressed as

L p qp
Z

 E x

x
x z x d advlog L (16)

2.2.3 Supervised VAEs/AAEs for property prediction & opti-
mization. In supervised VAEs, target properties y for each
molecule are incorporated into the generator in addition to
the SMILES strings or other molecular representation. Fig. 2
shows several different ways this can be done, representing
the generative models as graphical models. Everything we
discuss in this section can also be applied to AAEs,137 but we
restrict our discussion to VAEs for simplicity.

In the work by Gómez-Bombarelli et al. they attached a
neural network (multilayer perceptron) to the latent layer and
jointly trained the neural network to predict property values y
and the VAE to minimize reconstruction loss. One unique
property they optimize after training such a system is the pre-
dicted HOMO–LUMO gap, which is important for determin-
ing a molecule's utility in organic solar cells. The advantage
of supervised VAEs is that the generator learns a good latent
representation both for property prediction and reconstruc-
tion. With the property predictor trained, it becomes possible
to do property optimization in the latent space, by either
using Gaussian process optimization or gradient ascent.
Interestingly, in supervised VAEs a particular direction in the

MSDEReview

Mol. Syst. Des. Eng., 2019, 4, 828–849 | 839This journal is © The Royal Society of Chemistry 2019

latent space always became correlated with the property value
y, while this was never observed in unsupervised VAEs. When
one desires to do optimization, Gómez-Bombarelli et al. ar-
gue for using a Gaussian process model as the property pre-
dictor instead of a neural network, because it generates a
smoother landscape.23 The specific procedure they used was
to first train a VAE using supervised training with a neural
network property predictor and then train a Gaussian process
model separately using the latent space representations of
the training molecules as input. They then use the Gaussian
process model for optimization, and they showed it was supe-
rior to a genetic optimization algorithm and random search
in the latent space. Since that work, several other researchers
have used Gaussian process regression to perform optimiza-
tion in the latent space of a VAE.99,110,138

Two other types of supervised VAEs are shown in Fig. 2,
which we call “type 2” and “type 3”. Unlike the autoencoder
frame work discussed in the previous section, these two types
of autoencoder can be used for conditional generation. In
“type 3” supervised VAEs the ELBO term in the objective
function (eqn (12)) becomes:89

z∼qϕ(z|x,y)[logpθ(x|y,z)] − DKL[qϕ(z|x,y)∥p(z,y)] (17)

Kang et al. assume that the property values have a Gauss-
ian distribution. Type 3 VAEs are particularly useful when y
is known for only some of the training data (a semi-
supervised setting). In semi-supervised VAEs, the generator is
tasked with predict y and is trained on the molecules where y
is known and makes a best guess prediction for the rest. In
effect, when y is not known, it becomes just another latent
variable and a different objective function is used (for details,
see Kang et al.89).

In type 2 VAEs, property data y is embedded directly into
the latent space during training.88,111 Supervised and semi-
supervised VAEs can both be used for conditional sampling,
and thus are sometimes called “conditional VAEs”. In the tra-
ditional way of doing conditional sampling, y is specified
and then one samples from the prior pĲz). Then one samples
from the generator pθ(x|y,z). In the case of type 1 and type 2
VAEs, however, there is an issue pointed out by Polykovskiy
et al. which they call “entanglement”.111 The issue is that
when sampling we assumed that pĲz) is independent of pĲy).
However, the two distributions are actually “entangled” by
the implicit relationship between x and y which is in the

training data (this is indicated by a dashed line in Fig. 2). For
consistency, one should be sampling from pĲz|y). Polykovskiy
et al. developed two “disentanglement” approaches to amelio-
rate this issue: learning pĲz|y) and forcing all pĲz|y) to match
pĲz).111

When generating molecules with an RNN, we previously
discussed sampling from the model's distribution by simply
running the model and taking either the token with the maxi-
mum probability or using a multinomial sampler at each step
of the sequence generation. When sampling from the genera-
tor of a conditional VAE, we wish to know what the model says
is the likely molecule given y and z, since we are interested in
focusing on the molecules the model predicts are most likely
to be associated with a particular set of properties:

x x y z argmax
x

p (18)

Taking the most likely token at each step (the “greedy”
method) is only a rough approximation to x̂. Unfortunately,
completing the optimization in eqn (18) is a computationally
intractable problem because the space of sequences grows ex-
ponentially with the length of the sequence. However, a varia-
tion on the greedy method called “beam search” can be used
to get an approximation of x̂.89,139 In brief, beam search
keeps the top K most likely (sub)sequences at each step of
the generation.

2.3 Generative adversarial networks (GANs)

The key idea underlying GANs is to introduce a discriminator
network whose job is to distinguish whether the molecule it
is looking at was generated by the generative model or came
from the training data. In GAN training, the objective of the
generative model becomes to try to fool the discriminator
rather than maximizing likelihood. There are theoretical ar-
guments and growing empirical evidence showing that GAN
models can overcome some of the well known weaknesses of
maximum likelihood based training. However, there are also
many technical difficulties which plague GAN training and
getting GANs to work well typically requires careful
hyperparameter tuning and implementation of several non-
obvious “tricks”.140 GANs are a rapidly evolving research area,
and given space limitations we can only touch on several of
the key developments here.

Fig. 2 Different deep learning approaches visualized as graphical models. Figure adapted from Kang et al.89 Solid lines represent explicit
conditional dependencies while dashed lines represent implicit conditional dependencies (arising from the relationship between X and Y inherent
in the training data) for which disentanglement may be desired. a.) Regression (property prediction) b.) direct generative model c.) autoencoder d.)
supervised autoencoder, type 1 (ref. 23) e.) supervised autoencoder, type 2 (ref. 88 and 111) f.) supervised/semisupervised autoencoder, type 3.89

MSDE Review

840 | Mol. Syst. Des. Eng., 2019, 4, 828–849 This journal is © The Royal Society of Chemistry 2019

The original paper on GANs (Goodfellow et al. 2014) intro-
duced the following objective function:22

minmax , log

log
G D p

p

V D G D

D G

E

E

x x

z z

x

z
z

d

1

(19)

Here pdĲx) is the data distribution. This form of the objective
function has a nice interpretation as a two person minimax
game. However, this objective function is rarely used in prac-
tice for a few reasons. Firstly, as noted in the original paper,
this objective function does not provide a very strong gradi-
ent signal when training starts because then log(1 − DĲG(z)))
saturates (goes to negative infinity) and the numerical deriva-
tive becomes impossible to calculate. Still, understanding
this objective function can help understand how generative
modeling with GAN training can be superior to maximum
likelihood based generative modeling. For a fixed G, the opti-
mal discriminator is:

D
p

p pG
G

x
x

x x

d

d

* (20)

If we assume D DG * , then the objective function (G) for

the generator can be expressed as:22

(G) = −log(4) + 2DJS(pd,pθG) (21)

where DJSĲpd,pθG) is the Jensen–Shannon divergence:

D p p D p
p p

D p
p p

G

G

G

G

JS d KL d
d

KL
d

1
2 2

1
2 2

(22)

Here DKLĲp,q) is the Kullback–Leibler (KL) divergence. Maxi-
mizing the log-likelihood is equivalent to minimizing the for-
ward KL divergence DKLĲpd,pθG).

135 To better understand what
this means, we can rewrite the equation for KL divergence
(eqn (11)) in a slightly different way:

D p p p p p
G GKL d d d d z z z zlog log (23)

This shows us that KL divergence captures the difference
between pd and pθG weighted by pd. Thus one of the weak-
nesses of maximum likelihood is that pθG may have signifi-
cant deviations from pd when pd ≈ 0. To summarize, the for-
ward KL divergence (DKLĲpd,pθG)) punishes models that
underestimate the data distribution, while the reverse KL
divergence (DKLĲpd,pθG)) punishes models that overestimate
the data distribution. Therefore we see that eqn (21), which
contains both forward and backwards KL terms, takes a more
“balanced” approach than maximum likelihood, which only
optimizes forward KL divergence. Optimizing reverse KL di-

vergence directly requires knowing an explicit distribution for
pd, which usually is not available. In effect, the discriminator
component of the GAN works to learn pd, and thus GANs pro-
vide a way of overcoming this issue.

As noted before, the GAN objective function given in eqn
(19), however, does not provide a good gradient signal when
training first starts since typically pd and pθG have little over-
lap to begin with. Empirically, this occurs because data distri-
butions typically lie on a low dimensional manifold in a high
dimensional space, and the location of this manifold is not
known in advance. The Wasserstein GAN (WGAN) is widely
accepted to provide a better metric for measuring the dis-
tance between pd and pθG than the original GAN objective
function and results in faster and more stable training.141

The WGAN is based on the Wasserstein metric (also called
the “Earth mover's distance”) which can be informally under-
stood by imagining the two probability distributions pd and
pθG to be piles of dirt, and the distance between them to be
the number of buckets of dirt that need to be moved to trans-
form one to the other, times the sum of the distances each
bucket must be moved. Mathematically this is expressed as:

W p q x y
p q x y

 inf

E (24)

Π(x,y) can be understood to be the optimal “transport
plan” explaining how much probability mass is moved from
x to y. Another feature of the WGAN is the introduction of a
“Lipschitz constraint” which clamps the weights of the dis-
criminator to lie in a fixed interval. The Lipschitz constraint
has been found to result in a more reliable gradient signal
for the generator and improve training stability. Many other
types of GAN objective function have been developed which
we do not have room to discuss here. For a review of the
major GAN objective functions and latest techniques, see
Kurach et al.142

Several papers have emerged so far applying GANs to mo-
lecular generation—Guimaraes et al. (ORGAN),103 Sanchez-
Lengeling et al. (ORGANIC),108 De Cao & Kipf (MolGAN),50,63

and Putin et al. (RANC, ATNC).104,105 The Objective-
Reinforced GAN (ORGAN) of Guimares et al. uses the SMILES
molecular representation and an RNN (LSTM) generator and
a CNN discriminator.103 The architecture of the ORGAN is
taken from the SeqGAN of Yu et al.143 and uses a WGAN. In
ORGAN, the GAN objective function is modified by adding an
additional “objective reinforcement” term to the generator
RNN's reward function which biases the RNN to produce
molecules with a certain objective property or set of objective
properties. Typically the objective function returns a value
RĲS) ∈ [0, 1]. The reward for a SMILES string S becomes a
mixture of two terms:

R(S) = λD(S) + (1 − λ)R(S) (25)

where λ ∈ [0, 1] is a tunable hyperparameter which sets the
mixing between rewards for fooling the discriminator and

MSDEReview

Mol. Syst. Des. Eng., 2019, 4, 828–849 | 841This journal is © The Royal Society of Chemistry 2019

maximizing the objective function. The proof of concept of
the ORGAN was demonstrated by optimizing three quick-to-
evaluate metrics which can be computed with RDKit—
druglikeliness, synthesizability, and solubility. Proof of con-
cept applications of the ORGAN have been demonstrated in
two domains – firstly for drug design it as shown how OR-
GAN can be used to maximize Lapinksi's rule of five metric
as well as the quantitative estimate of drug likeliness metric.
The second application for which ORGAN was demonstrated
is maximizing the power conversion efficiency (PCE) of mole-
cules for use in organic photovoltaics, where PCE is esti-
mated using a machine learning based predictor that was
previously developed.108

2.3.1 The perfect discriminator problem and training in-
stabilities. GAN optimization is a saddle point optimization
problem, and such problems are known to be inherently un-
stable. If gradients for one part of the optimization dominate,
optimizers can run or “spiral” away from the saddle point so
that either the generator or the discriminator achieves a per-
fect score. The traditional approach to avoiding the perfect
discriminator problem, taken by Guimares et al. and others,
is to do additional MLE pretraining with the generator to
strengthen it and then do m gradient updates for the genera-
tor for every one gradient update for the discriminator. In
this method, m must be tuned to balance the discriminator
and generator training. A different, more dynamic method
for balancing the discriminator and generator was invented
by Kardurin et al. in their work on the DruGAN AAE.70 They
introduce a hyperparameter 0.5 < p < 1 which sets the de-
sired “discriminator power”. Then, after each training step, if
the discriminator correctly labels samples from the generator
with probability less than p, the discriminator is trained, oth-
erwise the generator is trained. Clearly p should be larger
than 0.5 since the discriminator should do better than ran-
dom chance in order to challenge the generator to improve.
Empirically, they found p = 3/5 to be a good value.

Putin et al. show that the ORGANIC model108 with its de-
fault hyperparameters suffers from a perfect discriminator
problem during training, leading to a plateauing of the gen-
erator's loss.104 To help solve these issues, Putin et al.
implemented a differentiable neural computer (DNC) as the
generator.104 The DNC (Graves et al., 2016)144 is an extension
of the neural Turing machine (Graves et al. 2014)145 that con-
tains a differentiable memory cell. A memory cell allows the
generator to memorize key SMILES motifs, which results in a
much “stronger” generator. They found that the discrimina-
tor never achieves a perfect score when training against a
DNC. The strength of the DNC is also shown by the fact that
it has a higher rate of valid SMILES generation vs. the OR-
GAN RNN generator (76% vs. 24%) and generates SMILES
that are on average twice as long as the SMILES generated by
ORGAN. In a subsequent work, Putin et al. also introduced
the adversarial threshold neural computer, another architec-
ture with a DNC generator.105

Another issue with GANs is mode collapse, where the
generator only generates a narrow range of samples. In the

context of molecules, an example might be a generator that
only generates molecules with carbon rings and less than
20 atoms.

3 Metrics and reward functions

A key issue in deep generative modeling research is how to
quantitatively compare the performance of different genera-
tive models. More generally a decline in rigor in the field of
deep learning as a whole has been noted by Sculley, Rahimi
and others.146 While the recent growth in the number of re-
searchers in the field has obvious benefits, the increased
competition that can result from such rapid growth
disincentivizes taking time for careful tuning and rigorous
evaluation of new methods with previous ones. Published
comparisons are often subtly biased towards demonstrating
superior performance for technically novel methods vs. older
more conventional methods. A study by Lucic et al. for in-
stance found that in the field of generative adversarial net-
works better hyperparameter tuning and training lead to
most recently proposed methods reaching very similar re-
sults.140,147 Similarly, Melis et al. found that with proper
hyperparameter tuning a conventional LSTM architecture
could beat several more recently proposed methods for natu-
ral language modeling.148 At the same time, there is a repro-
ducibility crisis afflicting deep learning—codes published
side-by-side with papers often give different results than what
was published,142 and in the field of reinforcement learning
it has been found that codes which purport to do the same
thing will give different results.147 The fields of deep learning
and deep generative modeling are still young however, and
much work is currently underway on developing new stan-
dards and techniques for rigorously comparing different
methods. In this section we will discuss several of the re-
cently proposed metrics for comparing generative models
and the closely related topic of reward function design for
molecular optimization.

3.1 Metrics for scoring generative models

Theis et al. discuss three separate approaches—log-likeli-
hood, estimating the divergence metric between the training
data distribution pĲx) and the model's distribution qĲx), and
human rating by visual inspection (also called the “visual Tu-
ring test”).149,150 Interestingly, they show that these three
methodologies measure different things, so good perfor-
mance under one does not imply good performance under
another.150

The “inception score” (IS) uses a third-party neural net-
work which has been trained in a supervised manner to do
classification.149 In the original IS, Google's Inception net-
work trained on ImageNet was used as the third-party net-
work. IS computes the divergence between the distribution of
classes predicted by the third-party neural network on gener-
ated molecules with the distribution of classes predicted for
the dataset used to train the neural network. The main

MSDE Review

842 | Mol. Syst. Des. Eng., 2019, 4, 828–849 This journal is © The Royal Society of Chemistry 2019

weakness of IS is that much information about the quality of
images is lost by focusing only on classification labels. The
Fréchet Inception Distance (FID) builds off the IS by compar-
ing latent vectors obtained from a late-stage layer of a third-
party classification network instead of the predictions.151 In-
spired by this, Preuer et al. created the Fréchet ChemNet Dis-
tance metric for evaluating models that generate mole-
cules.152 Unfortunately, there is a lack of agreement on how
to calculate the FID—some report the score by comparing
training data with generated data, while others report the
score comparing a hold out test set with the generated
data.142 Comparing with test data gives a more useful metric
which measures generalization ability, and is advocated as a
standard by Kurach et al.142

In the world of machine learning for molecular property
prediction, MoleculeNet provides a benchmark to compare
the utility of different regression modeling techniques across
a wide range of property prediction problems.153 Inspired by
MoleculeNet, Polykovskiy and collaborators have introduced
the MOlecular SEtS (MOSES) package to make it easier to
build and test generative models.154 To compare the output
of generative models, they provide functions to compute
Fréchet ChemNet Distance, internal diversity, as well as sev-
eral metrics which are of general importance for pharmaceu-
ticals: molecular weight, log P, synthetic accessibility score,
and the quantitative estimation of drug-likeness. In a similar
vein, Benhenda et al. have released the DiversityNet bench-
mark, which was also (as the name suggests) inspired by
MoleculeNet.155 Finally, another Python software package
called GuacaMol has also been released which contains 5
general purpose benchmarking methods and 20 “optimiza-
tion specific” benchmarking methods for drug discovery.156

One unique feature of GuacaMol is the ability to compute KL-
divergences between the distributions from generated mole-
cules and training molecules for a variety of physio chemical
descriptors.

Recently in the context of generative modeling of images
with GANs, Im et al. have shown significant pitfalls to using
the Inception Distance metric.157 As an alternative, they sug-
gest using the same type of divergence metrics that are used
during GAN training. This method has been explored recently
to quantify generalization performance of GANS158 and could
be of use to the molecular modeling community.

3.2 Reward function design

A good reward function is often important for molecular gen-
eration and essential for molecular optimization. The
pioneering molecular autoencoder work resulted in mole-
cules which were difficult to synthesize or contained highly
labile (reactive or unstable) groups such as enamines,
hemiaminals, and enol ethers which would rapidly break
apart in the body and thus were not viable drugs.159 Since
then, the development of better reward functions has greatly
helped to mitigate such issues, but low diversity and novelty
remains an issue.160–162 After reviewing the work that has

been done so far on reward function design, we conclude
that good reward functions should lead to generated mole-
cules which meet the following desiderata:

1. Diversity—the set of molecules generated is diverse
enough to be interesting.

2. Novelty—the set of molecules does not simply repro-
duce molecules in the training set.

3. Stability—the molecules are stable in the target environ-
ment and not highly reactive.

4. Synthesizability—the molecules can actually be
synthesized.

5. Non-triviality—the molecules are not degenerate or triv-
ial solutions to maximizing the reward function.

6. Good properties—the molecules have the properties de-
sired for the application at hand.

3.2.1 Diversity & novelty. A diversity metric is a key compo-
nent of any reward function, especially when using a GAN,
where it helps counter the issue of mode collapse to a non-
diverse subset. Given a molecular similarity metric between
two molecules T(x1,x2) ∈ [0, 1] the diversity of a generated set
 can be defined quite simply as:

r D x x
x x

diversity

1 1

1 2
1 2

G G G

(26)

A popular metric is the Tanimoto similarity between two
extended-connectivity fingerprint bit vectors.154 Since the di-
versity of a single molecule does not make sense, diversity re-
wards are calculated on mini-batches during mini-batch sto-
chastic gradient descent training. Eqn (26) is called “internal
diversity”. An alternative which compares the diversity of the
generated set with the diversity of the training data is the
nearest neighbor similarity (SNN) metric:154

r D x x
x x G G
G

D
SSN

1

G G
D

max () (27)

Of course, too much diversity can also be an issue. One
option is to use the following negative reward which biases
the generator towards matching the diversity of the training
data:

Rdiversity mismatch = −|rgenerateddiversity − rtrainingdiversity| (28)

Another diversity measure that has been employed is
uniqueness, which aims to reduce the number of repeat mol-
ecules. The uniqueness reward Runiqueness ∈ [0, 1] is defined
as:

Runiqueness
set

()G

G
(29)

where |setĲ)| is the number of unique molecules in the gen-
erated batch and || is the total number of molecules.

Novelty is just as important as diversity since a generator
which just generates the training dataset over and over is of

MSDEReview

Mol. Syst. Des. Eng., 2019, 4, 828–849 | 843This journal is © The Royal Society of Chemistry 2019

no practical utility. Guimaraes et al. define the “soft novelty”
for a single molecule as:103

R
x
xnovelty

If is not in the training set
If is in the training set

1
0 3

(30)

When measuring the novelty of molecules generated post-
training to get an overall novelty measure for the model, it is
important to do so on a hold-out test set . Then one can
look at how many molecules in a set of generated molecules
 appear in and use a novelty reward such as:75

rnovel

1
G T

T
(31)

which gives the fraction of generated molecules not appearing
in the test set. The diversity of the generated molecules and
how they compare to the diversity of the training set can also
be visualized by generating fingerprint vectors (which typically
have dimensionalities of d > 100) and then projecting them
into two dimensions using dimensionality reduction tech-
niques. The resulting 2D point cloud can then be compared
with the corresponding points from the training set and/or a
hold out test set. There are many possible dimensionality re-
duction techniques to choose from—Yoshikawa et al.161 use
the ISOMAP method,163 Merk et al.81 use multidimensional
scaling, and Segler et al.75 use t-SNE projection.164

Interpolation between training molecules may be a useful
way to generate molecules post-training which are novel, but
not too novel as to be unstable or outside the intended property
manifold. In the domain of image generation, GANs seem to ex-
cel at interpolation vs. VAEs, for reasons that are not yet fully
understood. For instance with GANs trained on natural images,
interpolation can be done between a z point corresponding to a
frowning man to a point z′ corresponding to a smiling woman,
and all of the intervening points result in images which make
sense.165 Empirically most real world high dimensional datasets
are found to lie on a low density manifold.166 Ideally, the di-
mensionality of the latent space pĲz) used in a GAN, VAE, or
AAE will correspond to the dimensionality of this manifold. If
the dimensionality of pĲz) is higher than the intrinsic dimen-
sionality of the data manifold, then interpolation can end up
going “off manifold” into so-called “dead zones”. For high di-
mensional latent spaces with a Gaussian prior, most points
will lie on a thin spherical shell. In such cases it has been
found empirically that better results can be found by doing
spherical linear interpolation or slerp.167 The equation for
slerp interpolation between two vectors v1 and v2 is

slerp t
t t

v v q q1 2 1 2

1

sin
sin

sin
sin

(32)

where θ = arccosĲv1·v2) and 0 ≤ t ≤ 1 is the interpolation
parameter.

Another option for generating molecules close to training
molecules but not too close is to have a reward for being sim-
ilar to the training data but not too similar. Olivecrona et al.
use a reward function RsĲS) ∈ [−1, 1] of the form:74

R S
S T k
ks

Sim

1 2

min
(33)

here S is the input SMILES and T is the target SMILES, and
SimĲS,T) ∈ [0, 1] is similarity scoring function which com-
putes fingerprint-based similarity between the two molecules.
k is a tunable cutoff parameter which sets the maximum sim-
ilarity accepted. This type of reward can be particularly useful
for generating focused libraries of molecules very similar to a
single target molecule or a small set of “actives” which are
known to bind to a receptor. Note that most generative
models can be run so as to generate molecules close to a
given molecule. For instance, with RNNs, one can do “frag-
ment growing”, which allows molecular designers to explore
molecules which share a predefined scaffold.73 Similarly,
with reinforcement learning one can simply start the agent
with a particular molecule and let it add or remove bonds. Fi-
nally, with a VAE one can find the latent representation for a
given molecule and then inject a small amount of Gaussian
noise to generate “nearby” molecules.90

3.2.2 Stability and synthesizability. Enforcement of
synthesizability has thus far mainly been done using the syn-
thetic accessibility (SA) score developed by Ertl &
Schuffenhauer,168 although other synthesizability scoring
functions exist.169,170 The model underlying the SA score was
designed and fit specifically to match scores from synthetic
chemists on a set of drug molecules, and therefore may be of
limited applicability to other types of molecules. When using
SA score as a reward in their molecular autoencoder, Gómez-
Bombarelli et al. found that it still produced a large number
of molecules with unrealistically large carbon rings. Therefore,
they added an additional “RingPenalty” term to penalize rings
with more than six carbons. In the ORGANIC GAN code,
Sanchez-Lengeling et al. added several penalty terms to the
original SA score function, and also developed an additional
reward for chemical symmetry, based on the observation that
symmetric molecules are typically easier to synthesize.108

For drug molecules, the use of scoring functions devel-
oped to estimate how “drug-like” or “natural” a compound is
can also help improve the synthesizability, stability, and use-
fulness of the generated molecules.103 Examples of such func-
tions include Lipinski's Rule of Five score,5 the natural
product-likeness score,171 the quantitative estimate of drug-
likeness,172 and the Muegge metrics.173,174 Another option of
particular utility to drug discovery is to apply medicinal
chemistry filters either during training or post-training to tag
unstable, toxic, or unsynthesizable molecules. For drug mole-
cules, catalogs of problematic functional groups to avoid
have been developed in order to limit the probability of
unwanted side-effects.175 For energetic molecules and other

MSDE Review

844 | Mol. Syst. Des. Eng., 2019, 4, 828–849 This journal is © The Royal Society of Chemistry 2019

niche domains an analogous set of functional groups to
avoid has yet to be developed.

Many software packages exist for checking molecule's sta-
bility and synthesizability which may be integrated into train-
ing or as a post-training filter. For example Popova et al. use
the ChemAxon structure checker software to do a validity
check on the generated molecules.79 Bjerrum et al. use the
Wiley ChemPlanner software post-training to find synthesis
routes for 25–55% of the molecules generated by their
RNN.72 Finally, Sumita et al. check for previously discovered
synthetic routes for their generated molecules using a
SciFinder literature search.80

It is worth mentioning that deep learning is now being
used for the prediction of chemical reactions11,12 and synthe-
sis planning. Segler et al. trained a deep reinforcement learn-
ing system on a large set of reactions that have been pub-
lished in organic chemistry and demonstrated a system that
could predict chemical reactions and plan synthetic routes at
the level of expert chemists.13

3.2.3 Rewards for good properties. Because they are called
often during training, reward functions should be quick to com-
pute, and therefore fast property estimators are called for. Ex-
amples of property estimation functions which are fast to evalu-
ate are the estimated octanol–water partition coefficient (logP),
and the quantitative measure of drug-likeness (QED),172 both of
which can be found in the open source package RDKit.52

Since physics based prediction is usually very computa-
tionally intensive, a popular approach is to train a property
predicting machine learning model ahead of time. There is
now an enormous literature on deep learning for property
prediction demonstrating success in multiple areas.8 Impres-
sive results have been obtained, such as systems which can
predict molecular energies at DFT accuracy,176 and highly ac-
curate systems which can transfer between many types of
molecules.177 While the literature on quantum property pre-
diction is perhaps the most developed, success has been seen
in other areas, such as calculating high level properties of en-
ergetic molecular crystals (such as sensitivity and detonation
velocity).10,27 Many predictive models are now published for
“off the shelf” use, for instance a collection of predictive
models for ADME (absorption, distribution, metabolism, and
excretion) called “SwissADME” was recently published.176

It has also been demonstrated that traditional physics-
based simulations can be used—Sumita et al. optimize ab-
sorption wavelength by converting SMILES strings into 3D
structures using RDKit and then calculating their UV-VIS ab-
sorption spectra on-the-fly with time-dependent density func-
tional theory (TD-DFT). Instead of the obvious reward func-
tion −α|λ* − λ|, where λ* is the target wavelength, they used
the following:80

R

*
*1

If DFTcalculationsuccessful

1 If DFTcalculationn fails

(34)

From the molecules generated by their RNN, Sumita et al.
selected six molecules for synthesis and found that 5/6
exhibited the desired absorption profiles.80

A reward function which has been used by several differ-
ent researchers to generate drug molecules is:

J(S) = log P(S) − SA(S) − Ring Penalty(S) (35)

Yang et al. add an additional penalty for generating inva-
lid SMILES which could be used more broadly:76

R S
J S
J S

1

for valid SMILES

1.0 for invalid SMILES

(36)

In the context of training the ORGAN architecture,
Guimaraes et al. found that rotating the reward function met-
ric from epoch to epoch had some advantages to using all
metrics at once.103 In other words, in one epoch the rewards
may just be for diversity, while in the next they would just be
for synthesizability, and so on. This idea could likely be ex-
plored further.

4 Prospective and future directions

In this review we have tried to summarize the current state of
the art for generative modeling of molecules using deep
learning. The current literature is composed of a rich array of
representation strategies and model architectures. As in
many areas of generative modeling and deep learning, the
present day work is largely empirical in nature. As our mathe-
matical understanding of the landscape of generative models
improves, so too will our ability to select the best approaches
to a particular problem. There are many promising new tech-
niques and architectures from deep generative modeling and
optimization more broadly which are ripe to be transferred to
the world of molecules. For example, for sequence modeling
the Maximum Likelihood Augmented Discrete GAN
(MaliGAN) has been shown to be superior to the SeqGAN on
which ORGAN is based.178 With RNNs, recently developed at-
tention mechanisms and external memory cells offer a possi-
ble avenue to improve SMILES string generation.179

It is worth noting that the latest genetic algorithm based
methods can still compete with today's deep learning based
methods. Yoshikawa et al. developed a genetic algorithm
which makes edits to SMILES and uses population-based evo-
lutionary selection to generate molecules with high binding
affinity as calculated via docking (rDock).38 They compared
their method with three other deep-learning based methods
(CVAE,23 GVAE,57 and ChemTS76) for optimizing the “penal-
ized log P score” (eqn (35)). They found that with computer
time fixed to eight hours, their method performed better or
comparable to the deep learning methods. In a similar vein,
Jensen found that a genetic algorithm performed better than
a SMILES based RNN + Bayesian optimization, the ChemTS

MSDEReview

Mol. Syst. Des. Eng., 2019, 4, 828–849 | 845This journal is © The Royal Society of Chemistry 2019

RNN, and a CVAE with 100x lower computational cost.180 It
appears that genetic algorithms can explore chemical space
in a very efficient manner.

In our discussion of GANs we highlighted an important
way in which GANs are superior to maximum likelihood
based methods—namely that they can avoid the “filling in”
problem which occurs with maximum likelihood where the
model's distribution ends up non-zero where the data distri-
bution is zero. Another point is that the theorems on which
the maximum likelihood methodology is based only hold
true in the limit of infinite samples.181 In general it appears
that GANs can be trained with far fewer samples than maxi-
mum likelihood based methods—this can be seen by looking
at the Ntrain values in Table 2. In addition to their benefits,
we also touched on several difficulties with GANs—small
starting gradient, training instabilities, the perfect discrimi-
nator problem, and mode collapse. However, we also cited
possible remedies for each of these issues and we expect
more remedies to be developed in the future.

There are several major trends we have observed which
present day practitioners and those entering the field should
be cognizant of:

New representation methods. SMILES based techniques
are quickly being replaced with techniques that work directly
with chemical graphs and three dimensional chemical struc-
tures. Directly working with chemical graphs, either by using
chemistry-preserving graph operations or tensor representa-
tions avoids the problems associated with requiring deep
generative models to learn SMILES syntax. At the same time,
there is also growing interest in generative models which can
generate 3D equilibrium structures, since in drug design and
other specialized applications the 3D geometry of molecules
is important.

Better reward functions. As mentioned earlier, reward
function design is a critical component to molecular genera-
tion and optimization. We expect future work will use more
sophisticated reward functions which combine multiple ob-
jectives into a single reward function. Using multiple reward
functions and multi-objective reinforcement learning is also
a promising approach.66

Pure reinforcement learning approaches. The deep rein-
forcement learning work of Zhou et al. demonstrated supe-
rior molecular optimization performance when compared
with the Junction Tree VAE,94 ORGAN,103 and Graph
Convolutional Policy Network65 approaches when optimizing
the logP and QED metrics.66 The work of Zhou et al. is nota-
ble as it is the first to take a pure RL approach with no
pretrained generator. We believe much future work in molec-
ular optimization will proceed in this direction since many
application areas have limited training data available.

Hierarchical modeling. Hierarchical representation
schemes will allow for efficient generative modeling of large
molecules (such as proteins182,183) as well as complex systems
such as polymers, metal organic frameworks, and molecular
crystals. Generative modeling techniques will also be useful
not just for optimizing molecules but also optimizing the

structures and systems in which they are embedded. GANs
have recently been applied to the generation of crystal struc-
tures184 and microstructures.185–187 Hierarchical GANs188 may
be useful for the generation of many-molecule complexes or
for the simultaneous optimization of both material and ge-
ometry in nanomaterials and metamaterials.

Closing the loop. After the synthesis and characterization
of new lead compounds the data obtained can be fed back to
improve the models used, a process called “closing the loop”.
More work is needed to develop workflows and methods to
interface and integrate generative models into laboratory
platforms to allow for rapid feedback and cycling. A key chal-
lenge is developing useful software and cyberinfrastructure
for computational screening and data management.189 The
potential for efficiency improvements via automated AI-
assisted synthesis planning and “self-driving” robotic labora-
tories is quite profound.14,15,190–192

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

Support for this work is gratefully acknowledged from the U.
S. Office of Naval Research under grant number N00014-17-1-
2108 and from the Energetics Technology Center under pro-
ject number 2044-001. Partial support is also acknowledged
from the Center for Engineering Concepts Development in
the Department of Mechanical Engineering at the University
of Maryland, College Park. We thank Dr. Ruth M. Doherty,
Dr. William Wilson, and Dr. Andrey Gorlin for their input
and for proofreading the manuscript.

References

1 J. A. DiMasi, H. G. Grabowski and R. W. Hansen, J. Health.
Med. Econ., 2016, 47, 20–33.

2 S. M. Paul, D. S. Mytelka, C. T. Dunwiddie, C. C. Persinger,
B. H. Munos, S. R. Lindborg and A. L. Schacht, Nat. Rev.
Drug Discovery, 2010, 9, 203–214.

3 A. Homburg, Propellants, Explos., Pyrotech., 2017, 42,
851–853.

4 P. G. Polishchuk, T. I. Madzhidov and A. Varnek,
J. Comput.-Aided Mol. Des., 2013, 27, 675–679.

5 C. A. Lipinski, F. Lombardo, B. W. Dominy and P. J.
Feeney, Adv. Drug Delivery Rev., 1997, 23, 3–25.

6 R. Macarron, M. N. Banks, D. Bojanic, D. J. Burns, D. A.
Cirovic, T. Garyantes, D. V. S. Green, R. P. Hertzberg, W. P.
Janzen, J. W. Paslay, U. Schopfer and G. S. Sittampalam,
Nat. Rev. Drug Discovery, 2011, 10, 188–195.

7 E. O. Pyzer-Knapp, C. Suh, R. Gómez-Bombarelli, J.
Aguilera-Iparraguirre and A. Aspuru-Guzik, Annu. Rev.
Mater. Res., 2015, 45, 195–216.

8 K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev and A.
Walsh, Nature, 2018, 559, 547–555.

MSDE Review

846 | Mol. Syst. Des. Eng., 2019, 4, 828–849 This journal is © The Royal Society of Chemistry 2019

9 P. Raccuglia, K. C. Elbert, P. D. F. Adler, C. Falk, M. B.
Wenny, A. Mollo, M. Zeller, S. A. Friedler, J. Schrier and
A. J. Norquist, Nature, 2016, 533, 73–76.

10 B. C. Barnes, D. C. Elton, Z. Boukouvalas, D. E. Taylor,
W. D. Mattson, M. D. Fuge and P. W. Chung, 2018, arXiv e-
prints:1807.06156.

11 D. Fooshee, A. Mood, E. Gutman, M. Tavakoli, G. Urban, F.
Liu, N. Huynh, D. V. Vranken and P. Baldi, Mol. Syst. Des.
Eng., 2018, 3, 442–452.

12 P. Schwaller, T. Gaudin, D. Lányi, C. Bekas and T. Laino,
Chem. Sci., 2018, 9, 6091–6098.

13 M. H. S. Segler, M. Preuss and M. P. Waller, Nature,
2018, 555, 604–610.

14 A. B. Henson, P. S. Gromski and L. Cronin, ACS Cent. Sci.,
2018, 4, 793–804.

15 L. M. Roch, F. Häse, C. Kreisbeck, T. Tamayo-Mendoza,
L. P. E. Yunker, J. E. Hein and A. Aspuru-Guzik, Sci. Robot.,
2018, 3, eaat5559.

16 D. Cireşan, U. Meier and J. Schmidhuber, 2012 IEEE
Conference on Computer Vision and Pattern Recognition,
2012, pp. 3642–3649.

17 A. Krizhevsky, I. Sutskever and G. E. Hinton, in Advances in
Neural Information Processing Systems 25, ed. F. Pereira, C.
J. C. Burges, L. Bottou and K. Q. Weinberger, Curran
Associates, Inc., 2012, pp. 1097–1105.

18 G. E. Dahl, N. Jaitly and R. Salakhutdinov, 2014, arXiv e-
prints:1406.1231.

19 G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever and
R. R. Salakhutdinov, 2012, arXiv e-prints:1207.0580.

20 A. Krizhevsky, I. Sutskever and G. E. Hinton, Commun.
ACM, 2017, 60, 84–90.

21 D. P. Kingma and M. Welling, 2013, arXiv e-prints:
1312.6114.

22 I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville and Y. Bengio, in Advances in
Neural Information Processing Systems 27, ed. Z.
Ghahramani, M. Welling, C. Cortes, N. D. Lawrence and K.
Q. Weinberger, Curran Associates, Inc., 2014, pp. 2672–
2680.

23 R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M.
Hernández-Lobato, B. Sánchez-Lengeling, D. Sheberla, J.
Aguilera-Iparraguirre, T. D. Hirzel, R. P. Adams and A.
Aspuru-Guzik, ACS Cent. Sci., 2018, 4, 268–276.

24 E. J. Griffen, A. G. Dossetter, A. G. Leach and S. Montague,
Drug Discovery Today, 2018, 23, 1373–1384.

25 R. Gómez-Bombarelli, J. Aguilera-Iparraguirre, T. D. Hirzel,
D. Duvenaud, D. Maclaurin, M. A. Blood-Forsythe, H. S.
Chae, M. Einzinger, D.-G. Ha, T. Wu, G. Markopoulos, S.
Jeon, H. Kang, H. Miyazaki, M. Numata, S. Kim, W. Huang,
S. I. Hong, M. Baldo, R. P. Adams and A. Aspuru-Guzik,
Nat. Mater., 2016, 15, 1120–1127.

26 P. B. Jørgensen, M. Mesta, S. Shil, J. M. G. Lastra, K. W.
Jacobsen, K. S. Thygesen and M. N. Schmidt, J. Chem.
Phys., 2018, 148, 241735.

27 D. C. Elton, Z. Boukouvalas, M. S. Butrico, M. D. Fuge and
P. W. Chung, Sci. Rep., 2018, 8, 9059.

28 B. C. Rinderspacher and J. M. Elward, Mol. Syst. Des. Eng.,
2018, 3, 485–495.

29 H. Li, C. R. Collins, T. G. Ribelli, K. Matyjaszewski, G. J.
Gordon, T. Kowalewski and D. J. Yaron, Mol. Syst. Des. Eng.,
2018, 3, 496–508.

30 D. Nagarajan, T. Nagarajan, N. Roy, O. Kulkarni, S.
Ravichandran, M. Mishra, D. Chakravortty and N. Chandra,
J. Biol. Chem., 2017, 293, 3492–3509.

31 A. T. Müller, J. A. Hiss and G. Schneider, J. Chem. Inf.
Model., 2018, 58, 472–479.

32 F. Grisoni, C. S. Neuhaus, G. Gabernet, A. T. Müller, J. A.
Hiss and G. Schneider, ChemMedChem, 2018, 13,
1300–1302.

33 X. Shen, T. Zhang, S. Broderick and K. Rajan, Mol. Syst.
Des. Eng., 2018, 3, 826–838.

34 Y. He, E. D. Cubuk, M. D. Allendorf and E. J. Reed, J. Phys.
Chem. Lett., 2018, 9, 4562–4569.

35 B. Pirard, Expert Opin. Drug Discovery, 2011, 6, 225–231.
36 L.-P. Wang, A. Titov, R. McGibbon, F. Liu, V. S. Pande and

T. J. Martínez, Nat. Chem., 2014, 6, 1044–1048.
37 J. Besnard, G. F. Ruda, V. Setola, K. Abecassis, R. M.

Rodriguiz, X.-P. Huang, S. Norval, M. F. Sassano, A. I. Shin,
L. A. Webster, F. R. C. Simeons, L. Stojanovski, A. Prat,
N. G. Seidah, D. B. Constam, G. R. Bickerton, K. D. Read,
W. C. Wetsel, I. H. Gilbert, B. L. Roth and A. L. Hopkins,
Nature, 2012, 492, 215–220.

38 N. Yoshikawa, K. Terayama, M. Sumita, T. Homma, K.
Oono and K. Tsuda, Chem. Lett., 2018, 47, 1431–1434.

39 A. Daina, O. Michielin and V. Zoete, Sci. Rep., 2017, 7, 2717.
40 D. Kuzminykh, D. Polykovskiy, A. Kadurin, A. Zhebrak, I.

Baskov, S. Nikolenko, R. Shayakhmetov and A.
Zhavoronkov, Mol. Pharmaceutics, 2018, 4378–4385.

41 M. Skalic, J. Jiménez Luna, D. Sabbadin and G. De Fabritiis,
J. Chem. Inf. Model., 2019, 59(3), 1205–1214.

42 A. Amidi, S. Amidi, D. Vlachakis, V. Megalooikonomou, N.
Paragios and E. I. Zacharaki, PeerJ, 2018, 6, e4750.

43 M. Hirn, S. Mallat and N. Poilvert, Multiscale Model. Simul.,
2017, 15, 827–863.

44 M. Eickenberg, G. Exarchakis, M. Hirn and S. Mallat, in
Advances in Neural Information Processing Systems 30, ed. I.
Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan and R. Garnett, Curran Associates, Inc.,
2017, pp. 6540–6549.

45 N. Thomas, T. Smidt, S. Kearnes, L. Yang, L. Li, K. Kohlhoff
and P. Riley, Tensor field networks: Rotation- and
translation-equivariant neural networks for 3D point clouds,
2018.

46 N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T.
Vandermeersch and G. R. Hutchison, J. Cheminf., 2011, 3,
33.

47 The Open Babel Package, http://www.openbabel.org.
48 D. Weininger, J. Chem. Inf. Model., 1988, 28(1), 31–36.
49 E. Jang, S. Gu and B. Poole, 2016, arXiv e-prints:1611.01144.
50 N. De Cao and T. Kipf, ICML 2018 workshop on Theoretical

Foundations and Applications of Deep Generative Models,
2018.

MSDEReview

http://www.openbabel.org

Mol. Syst. Des. Eng., 2019, 4, 828–849 | 847This journal is © The Royal Society of Chemistry 2019

51 M. Swain, MolVS, https://github.com/mcs07/MolVS.
52 G. Landrum, RDKit: Open-source cheminformatics, http://

www.rdkit.org.
53 E. J. Bjerrum and B. Sattarov, 2018, arXiv e-

prints:1806.09300.
54 E. J. Bjerrum, 2017, arXiv e-prints:1703.07076.
55 S. Heller, A. McNaught, S. Stein, D. Tchekhovskoi and I.

Pletnev, J. Cheminf., 2013, 5, 7.
56 R. Winter, F. Montanari, F. Noé and D.-A. Clevert, Chem.

Sci., 2019, 10, 1692–1701.
57 M. J. Kusner, B. Paige and J. M. Hernández-Lobato, 2017,

arXiv e-prints:1703.01925.
58 H. Dai, Y. Tian, B. Dai, S. Skiena and L. Song, 2018, arXiv e-

prints:1802.08786.
59 Y. Li, O. Vinyals, C. Dyer, R. Pascanu and P. Battaglia, 2018,

arXiv e-prints:1803.03324.
60 Y. Li, L. Zhang and Z. Liu, J. Cheminf., 2018, 10, 33.
61 M. Suzuki, H. Nagamochi and T. Akutsu, J. Cheminf.,

2014, 6, 31.
62 G. B. Goh, C. Siegel, A. Vishnu, N. O. Hodas and N. Baker,

2017, arXiv e-prints:1706.06689.
63 N. De Cao and T. Kipf, 2018, arXiv e-prints:1805.11973.
64 M. Simonovsky and N. Komodakis, 2018, arXiv e-

prints:1802.03480.
65 J. You, B. Liu, R. Ying, V. Pande and J. Leskovec, 2018,

arXiv e-prints:-1806.02473.
66 Z. Zhou, S. Kearnes, L. Li, R. N. Zare and P. Riley, 2018,

arXiv e-prints:1810.08678.
67 Z. Boukouvalas, D. C. Elton, P. W. Chung and M. D. Fuge,

2018, arXiv e-prints:1811.00628.
68 J. L. Durant, B. A. Leland, D. R. Henry and J. G. Nourse,

J. Chem. Inf. Comput. Sci., 2002, 42, 1273–1280.
69 A. Kadurin, A. Aliper, A. Kazennov, P. Mamoshina, Q.

Vanhaelen, K. Khrabrov and A. Zhavoronkov, Oncotarget,
2016, 8(7), 10883–10890.

70 A. Kadurin, S. Nikolenko, K. Khrabrov, A. Aliper and A.
Zhavoronkov, Mol. Pharmaceutics, 2017, 14, 3098–3104.

71 M. Simonovsky and N. Komodakis, 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017,
Honolulu, HI, USA, July 21–26, 2017, vol. 2017, pp. 29–38.

72 E. J. Bjerrum and R. Threlfall, 2017, arXiv e-
prints:1705.04612.

73 A. Gupta, A. T. Müller, B. J. H. Huisman, J. A. Fuchs, P.
Schneider and G. Schneider, Mol. Inf., 2017, 37, 1700111.

74 M. Olivecrona, T. Blaschke, O. Engkvist and H. Chen,
J. Cheminf., 2017, 9, 48.

75 M. H. S. Segler, T. Kogej, C. Tyrchan and M. P. Waller, ACS
Cent. Sci., 2017, 4, 120–131.

76 X. Yang, J. Zhang, K. Yoshizoe, K. Terayama and K. Tsuda,
Sci. Technol. Adv. Mater., 2017, 18, 972–976.

77 M. Cherti, B. Kégl and A. Kazakçı, International Conference
on Learning Representations, workshop track, Toulon,
France, 2017.

78 D. Neil, M. Segler, L. Guasch, M. Ahmed, D. Plumbley, M.
Sellwood and N. Brown, International Conference on
Learning Representations, 2018.

79 M. Popova, O. Isayev and A. Tropsha, Sci. Adv., 2018, 4,
eaap7885.

80 M. Sumita, X. Yang, S. Ishihara, R. Tamura and K. Tsuda,
ACS Cent. Sci., 2018, 4, 1126–1133.

81 D. Merk, L. Friedrich, F. Grisoni and G. Schneider, Mol.
Inf., 2018, 37, 1700153.

82 D. Merk, F. Grisoni, L. Friedrich and G. Schneider,
Communications Chemistry, 2018, 1, 68.

83 P. Ertl, R. Lewis, E. Martin and V. Polyakov, 2017, arXiv e-
prints:1712.07449.

84 J. Arús-Pous, T. Blaschke, S. Ulander, J.-L. Reymond, H.
Chen and O. Engkvist, ChemRxiv preprint, 2018.

85 S. Zheng, X. Yan, Q. Gu, Y. Yang, Y. Du, Y. Lu and J. Xu,
J. Cheminf., 2019, 11, 5.

86 P. Pogány, N. Arad, S. Genway and S. D. Pickett, J. Chem.
Inf. Model., 2018, 59(3), 1136–1146.

87 T. Blaschke, M. Olivecrona, O. Engkvist, J. Bajorath and H.
Chen, Mol. Inf., 2017, 37, 1700123.

88 J. Lim, S. Ryu, J. W. Kim and W. Y. Kim, J. Cheminf., 2018, 10, 31.
89 S. Kang and K. Cho, J. Chem. Inf. Model., 2018, 59(1), 43–52.
90 S. Harel and K. Radinsky, Mol. Pharmaceutics, 2018, 15,

4406–4416.
91 B. Sattarov, I. I. Baskin, D. Horvath, G. Marcou, E. J. Bjerrum

and A. Varnek, J. Chem. Inf. Model., 2019, 59(3), 1182–1196.
92 M. J. Kusner, B. Paige and J. M. Hernández-Lobato, 2017,

arXiv e-prints:1703.01925.
93 P. B. Jørgensen, M. N. Schmidt and O. Winther, Mol. Inf.,

2018, 37, 1700133.
94 W. Jin, R. Barzilay and T. S. Jaakkola, International

Conference on Learning Representations, 2018.
95 W. Jin, K. Yang, R. Barzilay and T. Jaakkola, International

Conference on Learning Representations, 2019.
96 Q. Liu, M. Allamanis, M. Brockschmidt and A. L. Gaunt,

2018, arXiv e-prints:1805.09076.
97 H. Kajino, 2018, arXiv e-prints:1803.03324.
98 R. Winter, F. Montanari, F. Noé and D.-A. Clevert,

ChemRxiv preprint, 2018.
99 B. Samanta, A. De, N. Ganguly and M. Gomez-Rodriguez,

2018, arXiv e-prints:1802.05283.
100 B. Samanta, A. De, G. Jana, P. K. Chattaraj, N. Ganguly and

M. Gomez-Rodriguez, 2018, arXiv e-prints:1802.05283.
101 T. Ma, J. Chen and C. Xiao, in Advances in Neural

Information Processing Systems 32, 2018.
102 S. M. Kearnes, L. Li and P. Riley, 2019, arXiv

e-prints:1904.08915.
103 G. Lima Guimaraes, B. Sanchez-Lengeling, C. Outeiral,

P. L. Cunha Farias and A. Aspuru-Guzik, 2017, arXiv e-
prints:1705.10843.

104 E. Putin, A. Asadulaev, Y. Ivanenkov, V. Aladinskiy, B.
Sanchez-Lengeling, A. Aspuru-Guzik and A. Zhavoronkov,
J. Chem. Inf. Model., 2018, 58, 1194–1204.

105 E. Putin, A. Asadulaev, Q. Vanhaelen, Y. Ivanenkov, A. V.
Aladinskaya, A. Aliper and A. Zhavoronkov, Mol.
Pharmaceutics, 2018, 15(10), 4386–4397.

106 O. Méndez-Lucio, B. Baillif, D.-A. Clevert, D. Rouquié and J.
Wichard, ChemRxiv preprint, 2018.

MSDE Review

https://github.com/mcs07/MolVS
http://www.rdkit.org
http://www.rdkit.org

848 | Mol. Syst. Des. Eng., 2019, 4, 828–849 This journal is © The Royal Society of Chemistry 2019

107 L. Maziarka, A. Pocha, J. Kaczmarczyk, K. Rataj and M.
Warchoł, Mol-CycleGAN - a generative model for molecular
optimization, 2019.

108 B. Sanchez-Lengeling, C. Outeiral, G. L. Guimaraes and A.
Aspuru-Guzik, ChemRxiv preprint, 2017.

109 D. Grattarola, L. Livi and C. Alippi, 2018, arXiv e-
prints:1812.04314.

110 H. Ikebata, K. Hongo, T. Isomura, R. Maezono and R.
Yoshida, J. Comput.-Aided Mol. Des., 2017, 31, 379–391.

111 D. Polykovskiy, A. Zhebrak, D. Vetrov, Y. Ivanenkov, V.
Aladinskiy, P. Mamoshina, M. Bozdaganyan, A. Aliper, A.
Zhavoronkov and A. Kadurin, Mol. Pharmaceutics,
2018, 15(10), 4398–4405.

112 N. Ståhl, G. Falkman, A. Karlsson, G. Mathiason and J.
Bostrom, ChemRxiv e-print, 2019.

113 L. C. Blum and J.-L. Reymond, J. Am. Chem. Soc., 2009, 131,
8732–8733.

114 T. Sterling and J. J. Irwin, J. Chem. Inf. Model., 2015, 55,
2324–2337.

115 L. Ruddigkeit, R. van Deursen, L. C. Blum and J.-L.
Reymond, J. Chem. Inf. Model., 2012, 52, 2864–2875.

116 M. Nakata and T. Shimazaki, J. Chem. Inf. Model., 2017, 57,
1300–1308.

117 R. Ramakrishnan, P. O. Dral, M. Rupp and O. A. von
Lilienfeld, Sci. Data, 2014, 1, 14022.

118 S. Chakraborty, P. Kayastha and R. Ramakrishnan, J. Chem.
Phys., 2019, 150, 114106.

119 S. A. Lopez, E. O. Pyzer-Knapp, G. N. Simm, T. Lutzow, K.
Li, L. R. Seress, J. Hachmann and A. Aspuru-Guzik, Sci.
Data, 2016, 3, 160086.

120 A. Géron, Hands-On Machine Learning with Scikit-Learn and
TensorFlow: Concepts, Tools, and Techniques to Build Intelli-
gent Systems, O'Reilly Media, Inc., 2017, 1st edn.

121 I. Goodfellow, Y. Bengio and A. Courville, Deep Learning,
MIT Press, 2016.

122 S. Hochreiter and J. Schmidhuber, Neural Comput., 1997, 9,
1735–1780.

123 K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F.
Bougares, H. Schwenk and Y. Bengio, Proceedings of the
2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2014, pp. 1724–1734.

124 M. Ranzato, S. Chopra, M. Auli and W. Zaremba, 2015,
arXiv:abs/1511.06732.

125 A. Venkatraman, M. Hebert and J. A. Bagnell, Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence,
2015, pp. 3024–3030.

126 S. Bengio, O. Vinyals, N. Jaitly and N. Shazeer, Proceedings
of the 28th International Conference on Neural Information
Processing Systems, Cambridge, MA, USA, 2015, vol. 1, pp.
1171–1179.

127 F. Huszár, 2015, arXiv e-prints:1511.05101.
128 R. J. Williams and D. Zipser, Neural Comput., 1989, 1, 270–280.
129 R. Gómez-Bombarelli, Broad Institute Models, Inference, &

Algorithms talk: “Deep learning chemical space”, 2017,
https://www.youtube.com/watch?v=ieZhnnvjyWU.

130 R. J. Williams, Machine Learning, 1992, vol. 8, pp. 229–256.

131 N. Jaques, S. Gu, D. Bahdanau, J. M. Hernádez-Lobato,
R. E. Turner and D. Eck, International Conference on
Machine Learning, 2017.

132 V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I.
Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg and
D. Hassabis, Nature, 2015, 518, 529–533.

133 G. Hinton and R. Salakhutdinov, Science, 2006, 313, 504–507.
134 R. Salakhutdinov and G. Hinton, Proceedings of the Twelth

International Conference on Artificial Intelligence and
Statistics, Hilton Clearwater Beach Resort, Clearwater
Beach, Florida USA, 2009, pp. 448–455.

135 P. Mehta, M. Bukov, C.-H. Wang, A. G. R. Day, C.
Richardson, C. K. Fisher and D. J. Schwab, 2018, arXiv e-
prints:1803.08823.

136 D. Janz, J. van der Westhuizen and J. M. Hernández-Lobato,
2017, arXiv e-prints:1708.04465.

137 A. Makhzani, J. Shlens, N. Jaitly and I. Goodfellow,
International Conference on Learning Representations, 2016.

138 R.-R. Griffiths and J. M. Hernández-Lobato, 2017, arXiv e-
prints:1709.05501.

139 I. Sutskever, O. Vinyals and Q. V. Le, 2014, arXiv e-prints:
1409.3215.

140 M. Lucic, K. Kurach, M. Michalski, S. Gelly and O.
Bousquet, 2017, arXiv e-prints:1711.10337.

141 M. Arjovsky, S. Chintala and L. Bottou, 2017, arXiv e-prints:
1701.07875.

142 K. Kurach, M. Lucic, X. Zhai, M. Michalski and S. Gelly,
2018, arXiv e-prints:1807.04720.

143 L. Yu, W. Zhang, J. Wang and Y. Yu, Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence,
February 4–9, 2017, San Francisco, California, USA., 2017,
pp. 2852–2858.

144 A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A.
Grabska-Barwińska, S. G. Colmenarejo, E. Grefenstette, T.
Ramalho, J. Agapiou, A. P. Badia, K. M. Hermann, Y. Zwols,
G. Ostrovski, A. Cain, H. King, C. Summerfield, P. Blunsom,
K. Kavukcuoglu and D. Hassabis, Nature, 2016, 538, 471–476.

145 A. Graves, G. Wayne and I. Danihelka, 2014, arXiv e-prints:
1807.06156.

146 D. Sculley, J. Snoek, A. Wiltschko and A. Rahimi, Sixth
International Conference on Learning Representations - Work-
shop Track, 2018.

147 P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup
and D. Meger, Thirthy-Second AAAI Conference On Artificial
Intelligence, 2018.

148 G. Melis, C. Dyer and P. Blunsom, 2017, arXiv e-
prints:1707.05589.

149 T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A.
Radford and X. Chen, 2016, arXiv e-prints:1606.03498.

150 L. Theis, A. van den Oord and M. Bethge, International
Conference on Learning Representations, 2016.

151 M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler and S.
Hochreiter, GANs Trained by a Two Time-Scale Update Rule
Converge to a Local Nash Equilibrium, 2017.

MSDEReview

https://www.youtube.com/watch?v=ieZhnnvjyWU

Mol. Syst. Des. Eng., 2019, 4, 828–849 | 849This journal is © The Royal Society of Chemistry 2019

152 K. Preuer, P. Renz, T. Unterthiner, S. Hochreiter and G.
Klambauer, J. Chem. Inf. Model., 2018, 58, 1736–1741.

153 Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C.
Geniesse, A. S. Pappu, K. Leswing and V. Pande, Chem. Sci.,
2018, 9, 513–530.

154 D. Polykovskiy, A. Zhebrak, B. Sanchez-Lengeling, S.
Golovanov, O. Tatanov, S. Belyaev, R. Kurbanov, A.
Artamonov, V. Aladinskiy, M. Veselov, A. Kadurin, S.
Nikolenko, A. Aspuru-Guzik and A. Zhavoronkov, 2018,
arXiv e-prints:: arXiv:1811.12823.

155 M. Benhenda, E. J. Bjerrum, H. Yi and C. Zaveri, Authorea
preprint, 2018.

156 N. Brown, M. Fiscato, M. H. Segler and A. C. Vaucher,
J. Chem. Inf. Model., 2019, 59(3), 1096–1108.

157 D. J. Im, A. H. Ma, G. W. Taylor and K. Branson,
International Conference on Learning Representations, 2018.

158 I. Gulrajani, C. Raffel and L. Metz, International Conference
on Learning Representations, 2019.

159 D. Lowe, Calculating A Few Too Many New Compounds,
2016, http://blogs.sciencemag.org/pipeline/archives/2016/
11/08/calculating-a-few-too-many-new-compounds.

160 M. Benhenda, 2017, arXiv e-prints:1703.01925.
161 N. Yoshikawa, K. Terayama, T. Honma, K. Oono and K.

Tsuda, 2018, arXiv e-prints:1804.02134.
162 J. Panteleev, H. Gao and L. Jia, Bioorg. Med. Chem. Lett.,

2018, 28, 2807–2815.
163 J. B. Tenenbaum, Science, 2000, 290, 2319–2323.
164 L. van der Maaten and G. Hinton, J. Mach. Learn. Res.,

2008, 9, 2579–2605.
165 A. Radford, L. Metz and S. Chintala, International

Conference on Learning Representations, 2016.
166 P. Domingos, Commun. ACM, 2012, 55, 78–87.
167 T. White, 2016, arXiv e-prints:1609.04468.
168 P. Ertl and A. Schuffenhauer, J. Cheminf., 2009, 1, 8.
169 Y. Podolyan, M. A. Walters and G. Karypis, J. Chem. Inf.

Model., 2010, 50, 979–991.
170 Y. Fukunishi, T. Kurosawa, Y. Mikami and H. Nakamura,

J. Chem. Inf. Model., 2014, 54, 3259–3267.
171 P. Ertl, S. Roggo and A. Schuffenhauer, J. Chem. Inf. Model.,

2008, 48, 68–74.
172 G. R. Bickerton, G. V. Paolini, J. Besnard, S. Muresan and

A. L. Hopkins, Nat. Chem., 2012, 4, 90–98.
173 I. Muegge, S. L. Heald and D. Brittelli, J. Med. Chem.,

2001, 44, 1841–1846.
174 I. Muegge, Med. Res. Rev., 2003, 23, 302–321.

175 A. Kalgutkar, I. Gardner, R. Obach, C. Shaffer, E. Callegari,
K. Henne, A. Mutlib, D. Dalvie, J. Lee, Y. Nakai, J.
O'Donnell, J. Boer and S. Harriman, Curr. Drug Metab.,
2005, 6, 161–225.

176 F. A. Faber, L. Hutchison, B. Huang, J. Gilmer, S. S.
Schoenholz, G. E. Dahl, O. Vinyals, S. Kearnes, P. F. Riley
and O. A. von Lilienfeld, J. Chem. Theory Comput., 2017, 13,
5255–5264.

177 L. Cheng, M. Welborn, A. S. Christensen and T. F. Miller
III, J. Chem. Phys., 2019, 150, 131103.

178 T. Che, Y. Li, R. Zhang, R. D. Hjelm, W. Li, Y. Song and Y.
Bengio, Maximum-Likelihood Augmented Discrete Generative
Adversarial Networks, 2017.

179 C. Olah and S. Carter, Distill, 2016, 1.
180 J. H. Jensen, Chem. Sci., 2019, 10, 3567–3572.
181 Z. Boukouvalas, 2018, arXiv e-prints: 1801.08600.
182 E. C. Alley, G. Khimulya, S. Biswas, M. AlQuraishi and

G. M. Church, 2019, bioRxiv e-prints:10.1101/589333v1.
183 N. Anand and P. Huang, in Advances in Neural Information

Processing Systems 31, ed. S. Bengio, H. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi and R. Garnett,
Curran Associates, Inc., 2018, pp. 7494–7505.

184 A. Nouira, N. Sokolovska and J.-C. Crivello, 2018, arXiv e-
prints:1810.11203.

185 X. Li, Z. Yang, L. C. Brinson, A. Choudhary, A. Agrawal and W.
Chen, Volume 2B: 44th Design Automation Conference, 2018.

186 R. Singh, V. Shah, B. Pokuri, S. Sarkar, B. Ganapathysubramanian
and C. Hegde, 2018, arXiv e-prints:1811.09669.

187 Z. Yang, X. Li, L. C. Brinson, A. N. Choudhary, W. Chen
and A. Agrawal, 2018, arXiv e-prints:1805.02791.

188 W. Chen, A. Jeyaseelan and M. D. Fuge, ASME 2016
International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference,
Quebec City, Canada, 2018.

189 J. Hachmann, M. A. F. Afzal, M. Haghighatlari and Y. Pal,
Mol. Simul., 2018, 44, 921–929.

190 S. K. Saikin, C. Kreisbeck, D. Sheberla, J. S. Becker and A.
Aspuru-Guzik, Expert Opin. Drug Discovery, 2018, 14, 1–4.

191 P. S. Gromski, A. B. Henson, J. M. Granda and L. Cronin,
Nat. Rev. Chem., 2019, 3, 119–128.

192 D. P. Tabor, L. M. Roch, S. K. Saikin, C. Kreisbeck, D.
Sheberla, J. H. Montoya, S. Dwaraknath, M. Aykol, C. Ortiz, H.
Tribukait, C. Amador-Bedolla, C. J. Brabec, B. Maruyama,
K. A. Persson and A. Aspuru-Guzik, Nat. Rev. Mater., 2018, 3,
5–20.

MSDE Review

http://blogs.sciencemag.org/pipeline/archives/2016/11/08/calculating-a-few-too-many-new-compounds
http://blogs.sciencemag.org/pipeline/archives/2016/11/08/calculating-a-few-too-many-new-compounds

	crossmark:

