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I. SUPPLEMENTARY METHODS: MACHINE
LEARNING BASIC WORKFLOW & TERMINOLOGY

In the machine learning workflow, data is first col-
lected, cleaned, and standardized. The target property
values are put into a vector y. Next, the raw data x;*" is
transformed into fixed-length feature vectors x; that are
useful for machine learning, a step called featurization.
The feature vectors become the rows in the design matrix
X. Machine learning algorithms take X and y as inputs
and attempt to find a function f(z) = yP™9 such that a
loss function is minimized. The machine learning model
defines a space of functions through which the search is
performed. The loss function we use is the squared error
loss, defined as :

N

Lee({zi} 9, f(@) = Y (i — f(20) (1)

i=1

Additionally, we add a regularization term to the loss
function

L({z:},y, f(x)) = Lse + af[w||” (2)

here w is the “weight vector” containing the tuneable pa-
rameters in the model. In what follows we use D = 2, cor-
responding to an L2 norm, except for in LASSO regres-
sion, which uses D = 1. Regularization penalizes model
functions of higher complexity. Regularization makes
machine learning models less prone to overfitting (fitting
noise in the data) and less sensitive to ill effects from out-
liers and strongly correlated features. The parameter «,
sometimes called the “regularization strength” sets the
degree of regularization and is an example of a hyperpa-
rameter. Hyperparameters are set in advance before the
machine learning model is trained.

Il.  SUPPLEMENTARY METHODS: STACKING
MODELS

We tried a few different variations on the idea of model
stacking, a type of ensemble learning ™2 In model stack-
ing the outputs of a set of trained models are used as
features for another model which makes the final predic-
tion. We experimented with a stacking strategy where a
model for density prediction was trained first, and then
the output of that model was used as an additional fea-
ture when training a model for explosive energy. The
improvement in performance was minimal.

I1l. SUPPLEMENTARY INFORMATION: TRAIN-TEST
SPLITTING METHODS & GENERALIZATION
PERFORMANCE

In an attempt to reduce the gap between the train
and test errors (ie. generalization error or overfitting),
we tried several popular train-test spliting strategies (ta-
ble . We compared standard shuffle split, stratifica-
tion over the chemical groups and stratification over clus-
ters. Clusters were determined using k-means clustering
with & = 10 (10 clusters). Plots of the clustering objec-
tive function (essentially a measure of average variance
from the cluster centroids) vs the number of clusters used
were analyzed. There was no clear “elbow point” indi-
cating an natural number of clusters in the data, so we
choose k = 10 clusters. No significant differences were
observed in the results, although in the case of the Huang
& Massa data the gap between train and test r values de-
creased slightly. We also looked into using “scaffold split”
which is implemented in the deepchem Python package.
Scaffold split groups molecules by their chemical scaffold
(backbone). We determined the method would not be
very useful to implement as many of the scaffolds ap-
peared only once in the data.

IV. SUPPLEMENTARY INFORMATION:
DESCRIPTIONS OF FINGERPRINTS

Atom-Pairs (Carhart et al. 1985)% - encodes the list
of all atom pairs in the molecule. Each atom pair is a
triplet of information consisting of (atom description i,
distance ij, atom description j). distance ij is the dis-
tance between atom ¢ and atom j as measured by the
shortest path length along the molecular bond network,
and each atom description is a specification of the atom
type by atomic number, number of m-bonding electrons,
and number of hydrogens. Each possible atom pair is en-
coded in a unique integer. The list of atom pairs becomes
a list of integers which can then be transformed into a
bit vector of desired length.

Topological Torsions (Ramaswamy et al., 1987)* - en-
codes the list of all topological torsions in the molecule.
Each topological torsions is sequence of four bonded non-
hydrogen atoms which is encoded in a quartet of informa-
tion consisting of (atom description i, atom description
j, atom description k, atom description l). Each atom
description is an integer containing information on the
atomic number and number of 7m-bonding electrons. As



name MAEain MAEtest MAPE{est RMSEgest R‘frain R%est Ttrain Ttest
shuffle 0.30 £+ 0.01 0.35 &+ 0.07 9.87 0.423 0.82 0.63 0.91 0.83
stratified over groups 0.30 £ 0.01 0.38 & 0.09  11.16 0.454 0.82 0.71 091 0.86
stratified over clusters 0.30 £ 0.01 0.36 £ 0.06 9.90 0.435 0.83 0.62 0.91 0.85

TABLE I. Comparison of different splitting techniques for the Huang & Massa data, prediction of explosive energy, using kernel
ridge regression and the combined (Estate-+Custom Descriptor Set+Sum over Bonds) featurization. The groups were Pyrazole
(N = 20), Cubane (N = 12), HMX (N = 6), Linear (N = 18), Butterfly (N = 10), Ketone (N = 7), TNT (N = 16), RDX
(N = 6), Ring (N = 8), CL20 (N = 6).

name MAErqin  MAEtest MAPE{est RMSEqeqt R%rain Rt?est Ttrain Ttest
shuffle 0.15 £ 0.00 0.17 4+ 0.03 2.18 0.249 0.89 0.82 094 0.91
stratified over groups 0.15 4+ 0.00 0.17 £+ 0.03 2.20 0.254 0.89 0.81 0.94 0.91
stratified over clusters 0.15 + 0.00 0.17 4 0.03 2.16 0.250 0.89 0.82 0.94 0.91

TABLE II. Comparison of different splitting techniques for the sensitivity data, prediction of detonation velocity, using kernel
ridge regression and the combined (Estate+Custom Descriptor Set+Sum over Bonds) featurization. The groups were designated
Unstable (N = 21), NAC (N = 86), NNO2 (N = 77), CNO2 (N = 66), ONO2 (N = 13), 5mArN (N = 45).

with atom-pair, each resulting type of topological torsion
in the molecule is encoded in a unique integer, and a list
of integers is generated for further processing.
Extended Connectivity Fingerprints (ECFPs)
(Rogers & Hahn, 2010)° This fingerprinting method was
developed at Accelrys, Inc. in 2000 and is also known
as Morgan circular fingerprinting, as it is a efficient ver-
sion of the classic Morgan fingerprinting algorithm (Mor-
gan, 1965).9 ECFPs are one of the most popular graph-
based fingerprints and encode information about graph
substructures. The algorithm for generating an ECFP is
as follows:

An initial assignment stage in which each atom has
an integer identifier assigned to it. This initial list
of integers is added to the fingerprint set. The
iterative updating stage — each atom collects its
own identifier and the identifiers of its immediately
neighboring atoms into an array. A hash function is
applied to reduce this array back into a new, single-
integer identifier. This new list of integers is added
to the fingerprint set. This process is iterated a
specified number of times d, known as the “width”
of the fingerprint. The duplicate identifier removal
stage - multiple occurrences of the same substruc-
ture are reduced to a single representative in the
final feature list.

In standard ECFPs, each initial atom identifier is a 32 bit
(=~ ten digit) integer which contains the following infor-
mation: 1. number of immediate neighbors who are heavy
(non-hydrogen) atoms, 2. the valence minus the num-
ber of hydrogens, 3. the atomic number, 4. the atomic
mass, 5. the atomic charge, 6. the number of attached hy-
drogens (both implicit and explicit), and 7. whether the
atom is contained in at least one ring. What information
is encoded in each atom identifier can be modified, and
thus many variants of ECFPs exist.

E-state fingerprints (Hall & Kier, 1995)Y The Es-
tate fingerprint is based on electrotopological state (E-
state) indices,¥ which encode information about associ-
ated functional group, graph topology, and the Kier-Hall

electronegativity of each atom. Mathematically, unlike in
ECFPs, the E-state indices for each atom are graph in-
variants, which means their value does not change when
the labeling of nodes is permuted. The E-state finger-
print differs from traditional fingerprints as it is fixed
length, containing a vector with counts of 79 atom types.
Thus, it is more of a descriptor set than a fingerpint. We
found that only 31 of the atom types were relevant to the
energetic materials we studied. The E-state fingerprint
can also be calculated as a real-valued vector which sums
the E-state indices for each atom, however we found the
predictive performance was exactly the same as with the
count vector version.

Avalon fingerprints (Gedeck, et al., 2006)? Avalon
fingerprints hash together a variety of information on
atom pairs, atom triplets, graph topology, atomic num-
ber, bonding types, and bonding environments.

RDKit Fingerprint (Landrum, 2006*”) The RDKit fin-
gerprint is a simple fingerprinting algorithm which enu-
merates all paths/subgraphs up to a certain size, hashes
them into bit vectors, and then OR’s the bitvectors to-
gether into a fingerprint vector.

For two other RDKit fingerprints we tested, the extended
reduced graph fingerprint (ErG),™' and physio-chemical
property fingerprints 12 we were not able to vary the fin-
gerprint length. (ErG is fixed length and physiochemical
property fingerprints could only be used at the default
length of 1024 due to constraints in RDKit). However
both of these performed worse than the all others and
are not shown on the plot. This is likely because both of
these fingerprints were designed specifically with biolog-
ical applications in mind.

ErG fingerprints (Stiefl, et al., 2006)-' The extended
reduced graph (ErG) fingerprint is generated by enumer-
ating reduced graphs. Reduced graphs are a custom en-
coding scheme which retains chemically relevant informa-
tion about graph substructures while throwing out super-
fluous information. ErG fingerprints contain information
about graph topology, atomic charge, and H-bond donor
and acceptor sites.

Physiochemical property fingerprints (Kearsley, et



al. 199712 These are modification of atom-pair finger-
prints were the atom types are determined by a triplet of
information: binding property class, atomic logP contri-
bution, and partial atomic charges.
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FIG. 1. Correlation plot visualization of the Huang & Massa property data.



name MAE¢ ain ~ MAEtest MAPEtest RMSE¢est Rgrain R%est Ttrain Ttest
Kernel Ridge 0.32 + 0.02 0.35 + 0.06 10.48 0.464 0.80 0.74 0.80 0.76
Bayesian Ridge 0.31 + 0.01 0.36 + 0.05 11.16 0.480 0.80 0.68 0.80 0.70
Elastic Net 0.31 + 0.01 0.37 & 0.05 11.13 0.485 0.80 0.68 0.80 0.72
Lasso 0.32 + 0.01 0.38 + 0.04 11.13 0.489 0.79 0.71 0.79 0.72

Ridge 0.32 & 0.01 0.39 &+ 0.05 11.44 0.500 0.79 0.66 0.80 0.73
Linear 0.30 + 0.01 0.39 + 0.02 11.52 0.510 0.81 0.65 0.81 0.68
Random Forest 0.19 4+ 0.01 0.48 £ 0.06 14.48 0.631 0.92 049 0.94 0.53
Support Vector 0.18 + 0.01 0.48 + 0.10 17.33 0.671 0.89 0.45 0.93 0.50
Gradient Boosted Trees 0.04 + 0.01 0.49 + 0.04 14.45 0.628 0.99 043 1.00 0.49
k-Nearest Neighbors 0.35 4+ 0.03 0.49 + 0.09 15.67 0.668 0.78 0.44 0.79 0.52
Gaussian Process 0.00 4 0.00 0.63 £ 0.15 23.45 0.889 1.00 0.04 1.00 0.15
Neural Network 0.76 & 0.02 0.96 &= 0.10  28.03 1.250 -0.04 -0.92 0.29 0.19
Take the mean 0.68 + 0.02 0.69 £+ 0.08 24.91 0.935 0.00 -0.05 0.00 0.00

TABLE III. A complete comparison of all the models tested for explosive energy prediction with the sum over bonds featurization
and 5-fold cross validation. One train-test split (n4p4in/Mtest = D) is shown for case, along with the mean average error and
Pearson correlation r averaged over the 5 train-test splits. Gaussian process regression can improved with by implementing
custom kernels (our result uses the default RBF kernel). We found neural network models could be found with more more
extensive hyperparameter optimization, but still were worse than Kernel Ridge.

s1 Kernel Ridge s{ Bayesian Ridge . s| Elastic Net s Lasso
(MAE) (test) = 0.3§ (MAE) (test) = 0.3 (MAE) (test) = 0.37 (MAE) (test) = 0.38
51 (r) (test) = 0.76 51 (r) (test) =0.70 5| (r) (test) = 0.72 . 5] (r) (test) = 0.72
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FIG. 2. A complete comparison of all the models tested for explosive energy prediction with the sum over bonds featurization
and 5-fold cross validation.



TNT

po & ams, KL g Ky km oy kme oy kme pogpy T,K  — W

KRR Estate 0.10835 261.0235535 0.63057 0.48733 0.13513 0.41535 4.95733 500.19352:35 0.189%%9
CDS 0.083:92 198.81%2LL-87 0.500:52 0.44045 0.11912  0.3794%  3.075:3%  462.63313:95  0.17912

CM eigs 0.000:3% 288.41383-19 0.670%5 0.6705F 0.18529  0.619%  5.6781% 600.08835:05  0.229:38

Bag of Bonds  0.063:0% 166.66159:29 0.470:5% 0.33935 0.11942 0.299:33 3.383:85 478.93322:327 0.189%%
Estate+CDS+SoB  0.063:05 71.4073:%3 0.3693% 0.320:3% 0.100:89 0.2993%F  2.762:28 359.663559% 0.130:13
OBis600 0.070:07 368.32330:12 0.48032 0.530:32 0.180:07  0.500:37 3.433:95 704573313  0.220:3;

SVR Estate 0.093:89 207.78%231:20 0.609:%%  0.450:50 0.13%1%  0.350:37 4.4118% 476.0633537  0.17918
CDS 0.073:98 223.24237-7L 052055  0.34037 0.1291%  0.320:35  3.21332 436.81372:8%  0.18712

SoB 0.069:9% 130.7815242 0.403-32 0.31333 0.10935 0.289:32 297318 331.2735%55  0.14918

CM eigs 0.083:32 288.41328-7° 0.550:25 0.600:%2  0.1551% 0.530:38 4.5419% 584.4482438  0.21933

Bag of Bonds  0.073:3% 159.24185-93 0.470:3% 0.359:37 0.1291% 0.280:3% 3.343:32 385.50317:2%  0.1851%
Estate+CDS+SoB  0.060:08 129.89148:82 0.375:32 0.343:3% 0.100:89 0.2853% 2.732:2% 353.18373%  0.13%:13
OBi1600 0.070:05 337.94303:47 0.5205% 0.440:37 0.120:77  0.419:33  3.783:87 546.4230047  0.190'72

Ridge Estate 0.093:39 269.11392:31 0.583:83  0.570'%% 0.14513 04531 47139 491.21338%%  0.199:2
CDS 0.073:3% 193.19295-17 0.43%:45  0.399:43  0.11912  0.330:37  3.233:3% 438.27387:22  0.17018

SoB 0.060:0% 82.00887¢ 0.375:30 0.320:3% 0.100:8% 0.2993%F  3.0132 327.43338% 0.11312

CM eigs 0.093:8% 355.12395:42 0.799:22  0.600:%% 0.16313 0.550:27 5.82837 590.69952-83  0.199:29

Bag of Bonds  0.063:9% 163.76183:79 0.483:5: 0.32035 0.11912 0.313:33 3.373:87 472.93312:33  0.199:2%
Estate+CDS+SoB  0.060:08  77.318312  0.398:3% 0.320:3% 0.103:3% 0.285:3F 278235 383.073:3:%%  0.13%13
OBi60o 0.060:06 362.89353:58 0.49033 0.51:37 0.119:75 0.46033 3.39593 545.27372:89  0.199:78

RF Estate 0.093:39 252.74291-8% 0.599:%%  0.500:58 0.14913  0.393:32  4.00335 488.9833333  0.1992%
CDS 0.073:38 241.67392:32 0.463:59 0.360:33 0.11912 0.299:32  3.34337 435.77373:37  0.16018

SoB 0.073:38 136.91152:28 0.483:5F 0.4004% 0.12913 0.309:33 3.4731% 417.463383%  0.15018

CM eigs 0.099:58 286.89353:55 0.679:67  0.62088  0.1501%7 0.5103% 552892 512.2232%:33  0.200:32

Bag of Bonds  0.073:9% 172.41125:19 0.463:5% 0.360:33 0.10915 0.293:32  3.103:29 418.35322:87  0.160:18
Estate+CDS+SoB  0.073:55 144.181$39% 0.43%:47  0.3433°  0.099:09 0.26037 3.11339 401.27351:57  0.159:1%
OBi1600 0.080:07 443.5631381 0.48)53 0.4807¢ 0.12077 0.45035 3.58357 611278597  0.219'79

kNN Estate 0.083:08 236.55300-57 0.619:57 0.495:32 0.15015 0.41043  4.3035% 563.8989%:23  0.200:7%
CDS 0.078:0% 242.99371-35 0.550:27 0.390:32 0.13313 0.330:35 3.56553 478.503%5 %2  0.1851%

SoB 0.083:08 184.43729:57 0.549:35 0.44935 0.12011 0.36035  3.653 %% 427.2055% 64  0.170:1%

CM eigs 0.109:88  343.483°870 0.62987 0.67953 0.15318  0.51938 5.5225% 570.558047  0.2293

Bag of Bonds  0.083:92 238.05335:82 0.530:55 0.400:4% 0.11912 0.320:35 3.5838%5 515.2532578  0.199:29
Estate+CDS+SoB  0.083:0% 1716519235 0.543:55 0.433:45 0.1253  0.350:37  3.5737¢ 442.1417¢:3%  0.179:18
OBi60o 0.083:0% 333.95338:57 0.4995% 0.500:3¢ 0.118:15 0.450:35  3.45373 515.623%58  0.190:7%

TABLE IV. Average mean absolute errors in the test sets for different combinations of target property, model and featurization.
Hyperparameter optimization and 20-fold shuffle split with a train-test ratio of 4:1 was used. 95% confidence intervals for the
mean errors were calculated using the standard statistical method with the corresponding ¢ value.



TNT. .
g AHS, KL po Koy kmoy kmoy L Kmo pogpa) 7 (K) — 29UV ayg

P cc £’ mol S snd’> s cC
KR Estate 0.69 0.39 0.72 0.53 0.58 0.56 0.55 0.51 0.60 0.57
CDS 0.57 0.63 0.56 0.57 0.44 0.50 0.45 0.50 0.42 0.52
SoB 0.70 0.95 0.72 0.70 0.67 0.73 0.67 0.61 0.70 0.72

CM eigs 0.40 0.33 0.52 0.25 0.51 0.20 0.33 0.21 0.34 0.34
Bag of Bonds  0.61 0.78 0.72 0.73 0.56 0.75 0.61  0.46 0.49 0.63

Estate+CDS+SoB 0.74 0.94 0.78 0.70 0.65 0.71 0.65 0.50 0.65 0.70

SVR Estate 0.55 0.57 0.56 0.70 0.70 0.61 0.60  0.52 0.53 0.59
CDS 0.39 0.06 0.38 0.51 0.37 0.48 0.46 0.34 0.31 0.37

SoB 0.38 0.61 0.60 0.62 0.59 0.58 0.57  0.58 0.57 0.57

CM eigs 0.02 0.05 0.03 0.05 0.03 0.05 0.03  0.06 0.11 0.05
Bag of Bonds  0.04 0.12 0.04 0.14 0.10 0.15 0.10 0.14 0.10 0.10
Estate+CDS+SoB (.32 0.58 0.46 0.56 0.43 0.54 0.47  0.56 0.58 0.50

Ridge Estate 0.69 0.28 0.69 0.56 0.66 0.44 0.61  0.45 0.51 0.54
CDS 0.64 0.63 0.60 0.40 0.46 0.45 0.40  0.50 0.49 0.51
SoB 0.71 0.93 0.69 0.78 0.63 0.74 0.63  0.68 0.71 0.72

CM eigs 0.46 0.20 0.43 0.13 0.32 0.12 0.30  0.19 0.22 0.26
Bag of Bonds  0.47 0.74 0.63 0.73 0.53 0.75 0.57  0.36 0.39 0.58
Estate+CDS+SoB 0.70 0.94 0.79 0.76 0.69 0.69 0.65 0.60 0.70 0.72

Lasso Estate 0.58 0.34 0.69 0.50 0.61 0.49 0.44  0.39 0.41 0.49
CDS 0.54 0.68 0.55 0.41 0.48 0.41 043  0.53 0.48 0.50
SoB 0.62 0.94 0.73 0.77 0.69 0.78 0.60  0.63 0.63 0.71

CM eigs 0.41 0.26 0.38 0.12 0.31 0.13 0.21 0.24 0.23 0.25
Bag of Bonds  0.43 0.66 0.50 0.75 0.55 0.75 0.45 0.33 0.39 0.53
Estate+CDS+SoB 0.71 0.95 0.73 0.75 0.69 0.78 0.62  0.54 0.67 0.72

BR Estate 0.66 0.38 0.70 0.54 0.64 0.51 0.59  0.36 0.48 0.54
CDS 0.62 0.67 0.57 0.47 0.47 0.39 0.40 0.46 0.42 0.50
SoB 0.67 0.93 0.73 0.73 0.75 0.77 0.59  0.55 0.70 0.71

CM eigs 0.42 0.18 0.37 0.10 0.34 0.26 0.18 0.21 0.21 0.25
Bag of Bonds  0.55 0.78 0.55 0.72 0.48 0.72 0.57  0.27 0.41 0.56
Estate+CDS+SoB 0.77 0.95 0.74 0.77 0.66 0.75 0.65 0.59 0.60 0.72

GBoost Estate 0.43 0.39 0.52 0.43 0.53 0.54 0.39  0.37 0.35 0.44
CDS 0.49 0.47 0.43 0.48 0.46 0.56 0.39  0.49 0.43 0.47
SoB 0.60 0.78 0.62 0.61 0.60 0.56 0.45 0.60 0.40 0.58

CM eigs 0.23 0.42 0.13 0.15 0.07 0.02 0.10 0.27 0.27 0.18
Bag of Bonds  0.66 0.75 0.58 0.73 0.56 0.70 0.49  0.55 0.56 0.62
Estate+CDS+SoB 0.64 0.81 0.61 0.64 0.60 0.63 0.43  0.59 0.52 0.61

RF Estate 0.47 0.41 0.39 0.50 0.62 0.56 042 0.35 0.41 0.46
CDS 0.56 0.44 0.42 0.44 0.41 0.46 0.41 0.44 0.42 0.45
SoB 0.56 0.79 0.55 0.63 0.55 0.60 0.41  0.52 0.41 0.56

CM eigs 0.22 0.32 0.22 0.18 0.23 0.10 0.19 0.30 0.29 0.23
Bag of Bonds  0.68 0.72 0.63 0.67 0.62 0.71 0.47  0.51 0.46 0.61
Estate+CDS+SoB 0.63 0.79 0.64 0.62 0.56 0.68 0.53 0.52 0.49 0.60

kNN Estate 0.42 0.43 0.46 0.52 0.44 0.47 0.49 0.36 0.39 0.44
CDS 0.47 0.06 0.42 0.28 0.38 0.28 0.38  0.42 0.41 0.35
SoB 0.49 0.65 0.46 0.62 0.46 0.58 0.46  0.48 0.53 0.53

CM eigs 0.20 0.26 0.22 0.03 0.16 0.13 0.07 0.14 0.18 0.16
Bag of Bonds  0.41 0.34 0.53 0.70 0.56 0.65 0.43 0.32 0.36 0.48
Estate+CDS+SoB 0.54 0.50 0.55 0.58 0.44 0.54 0.58  0.40 0.45 0.51

TABLE V. Pearson correlation values in the test set for different combinations of target property, model and featurization.
Hyperparameter optimization and 5-fold cross validation was used here.



KR CDS 3.97 10813 16.22 5.38 6.95 5.99 13.57 12.69  12.95
SoB 2.97 59.83 11.11  3.60 4.96 4.04 11.07 13.13  10.27
SVR CDS 3.55 107.53 15.24  4.55 6.35 5.22 12.09 11.97  14.88
SoB 3.31  67.36 11.21 4.7 5.21 4.55 9.56 10.68 8.33
Ridge CDS 3.85 127.68 16.80 6.13 7.13 6.80 14.87 13.10 13.44
SoB 3.24 70.76 11.98  3.60 4.85 4.41 10.25 10.60 8.52
mean CDS 5.67 106.41  24.78 8.17 8.46 8.91 21.56 18.40  17.60
SoB 5.70  113.62  24.55 7.98 8.62 8.87 21.45 18.58  17.60

TABLE VI. Mean absolute percentage errors for some of the models and two of the best featurization. Note that these numbers
are often inflated by the presence of small target values, and may not accurately reflect model accuracy.

t-SNE

PCA

spectral embedding

. -..’

RDX
Linear
Ketone
Ring
Butterfly
HMX
Cubane
TNT
CL20
Pyrazole

FIG. 3. Two dimensional embeddings of the Huang & Massa data using the sum over bonds featurization and three different
embedding techniques - t-SNE, PCA, & spectral embedding. The upper figures show the different chemical groups while the
bottom figures show the explosive energy (dark = low, light = high).
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