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A B S T R A C T

Reliable localization of lymph nodes (LNs) in multi-parametric MRI (mpMRI) studies plays a major role in the
assessment of lymphadenopathy and staging of metastatic disease. Radiologists routinely measure the nodal
size in order to distinguish benign from malignant nodes, which require subsequent cancer staging. However,
identification of lymph nodes is a cumbersome task due to their myriad appearances in mpMRI studies. Multiple
sequences are acquired in mpMRI studies, including T2 fat suppressed (T2FS) and diffusion weighted imaging
(DWI) sequences among others; consequently, the sizing of LNs is rendered challenging due to the variety of
signal intensities in these sequences. Furthermore, radiologists can miss potentially metastatic LNs during a
busy clinical day. To lighten these imaging and workflow challenges, we propose a computer-aided detection
(CAD) pipeline to detect both benign and malignant LNs in the body for their subsequent measurement. We
employed the recently proposed Dynamic Head (DyHead) neural network to detect LNs in mpMRI studies that
were acquired using a variety of scanners and exam protocols. The T2FS and DWI series were co-registered,
and a selective augmentation technique called Intra-Label LISA (ILL) was used to blend the two volumes with
the interpolation factor drawn from a Beta distribution. In this way, ILL diversified the samples that the model
encountered during the training phase, while the requirement for both sequences to be present at test time
was nullified. Our results showed a mean average precision (mAP) of 53.5% and a sensitivity of ∼78% with
ILL at 4 FP/vol. This corresponded to an improvement of ≥10% in mAP and ≥12% in sensitivity at 4FP (p <
0.05) respectively over current LN detection approaches evaluated on the same dataset. We also established the
out-of-distribution robustness of the DyHead model by training it on data acquired by a Siemens Aera scanner
and testing it on data from the Siemens Verio, Siemens Biograph mMR, and Philips Achieva scanners. Our
pilot work represents an important first step towards automated detection, segmentation, and classification of
lymph nodes in mpMRI.
1. Introduction

Lymph nodes (LNs) are small structures scattered throughout the
body and are a part of the lymphatic system. Lymphocytes (immune
cells) in the LNs travel through the nodal network in search of certain
target proteins that need to be filtered and removed from the body. An
abnormal proliferation of lymphocytes in some patients can result in
swollen lymph nodes or lymphadenopathy (Ruby and Shivaraj, 2022);
this could be due to many reasons, such as infections, autoimmune
disease, and malignancy. In these patients, enlarged and metastatic
nodes need to be distinguished from benign nodes (Taupitz, 2007).
It is especially crucial to identify enlarged LNs if they are found at
sites that do not correspond to the first site of lymphatic spread as
this signals distant metastasis (Taupitz, 2007). Multi-parametric MRI
(mpMRI) is a common imaging method used to detect abnormal LNs.
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In mpMRI, various sequences are obtained, such as T2-weighted series,
T2 fat suppressed (T2FS) series, Diffusion Weighted Imaging (DWI),
and derived Apparent Diffusion Coefficient (ADC) maps. The American
Joint Committee on Cancer (AJCC) provide guidelines (Amin et al.,
2017) on the measurement of nodal size, location, and number of LNs
to be evaluated for patient treatment. With the help of these guidelines,
radiologists routinely measure the size of LNs with the long- and short-
axis diameters (LAD and SAD) to determine the metastatic nature
of lymph nodes. Nodes with a SAD ≥ 1 cm on T2FS sequences are
considered suspicious for metastasis (Taupitz, 2007), and a correlation
with a different series (e.g., DWI and ADC) is typically sought for
malignancy confirmation.

Clinically, it is important to identify lymph nodes with a SAD ≥1 cm
and bring them to the attention of the radiologist reading the study,
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such that they measured and assessed appropriately. However, precise
measurement of LNs is challenging due to the diverse appearances
and shapes of LNs in mpMRI. Additional confounding factors that
complicate the assessment are the variety of imaging scanners built by
different manufacturers, their myriad uses at different imaging insti-
tutions/centers, exam protocols utilized by the imaging technologist,
institutional guidelines for LN assessment, and observer measurement
variability among others. Furthermore, sizing of various structures
(e.g., lesions, nodules, LNs) at various locations in the body is a routine
and repetitive task within a radiologist’s daily workflow. During a
busy clinical day, it is possible that some suspicious structures may
be missed. To relieve this time-consuming and cumbersome nature of
repetitive measurements, a artificial intelligence (AI) algorithm that
can account for all these factors is clinically necessary.

In the past, several algorithms have been proposed for LN identifi-
cation (Zhao et al., 2020; Lu et al., 2018; Debats et al., 2019; Mathai
et al., 2021, 2022a; Wang et al., 2022; Mathai et al., 2022b). Certain
approaches focus on detecting LNs in specific regions of body, such as
the pelvis (Debats et al., 2019; Lu et al., 2018) and rectum (Zhao et al.,
2020). Debats et al. (2019) extracted patches from the slices of MR lym-
phography studies of the pelvis and fed them to a convolutional neural
network to classify metastatic and normal lymph node tissue. Other
research works (Mathai et al., 2021, 2022a; Wang et al., 2022; Mathai
et al., 2022b) for the detection of both benign and malignant lymph
nodes also exist; T2FS MRI volumes were used in these approaches to
train a variety of neural networks, such as Mask RCNN (Wang et al.,
2022), Detection Transformer (Mathai et al., 2022a), and ensemble-
based approaches (Mathai et al., 2021, 2022a,b). However, the utility
of multi-parametric MRI studies has not been widely studied and there
are only a few approaches for this task (Zhao et al., 2020; Lu et al.,
2018). Lu et al. (2018) trained a Faster RCNN model on LNs annotated
in slices of both T2FS and DWI series (sequences were not registered
to each other) from mpMRI studies, and classified the status of LNs
in a test set as benign or malignant. Zhao et al. (2020) used a Mask
RCNN model to detect and segment LNs in the rectal region of pelvic
mpMRI studies. Both T2FS and DWI series were used and 3-channel
input images were constructed for training the Mask RCNN model.
The authors investigated various combinations of T2FS and DWI slices
(e.g., 2 T2FS slices + 1 DWI slice) as input. Since DWI or ADC may not
lways be acquired, relying on the presence of a DWI sequence may
ot be ideal.

In this work, we present an automated pipeline for lymph node
etection in mpMRI studies. Our pipeline uses the T2FS and DWI
equences from an mpMRI study, and harnesses a Dynamic Head
DyHead) network (Dai et al., 2021) to detect LNs (metastatic and
on-metastatic) for subsequent measurement. The T2FS and DWI series
ere co-registered, and then linearly interpolated together to create a
lended volume using a selective data augmentation technique called
ntra-Label LISA (ILL) (Yao et al., 2022). The blended volume contained
raits of both series, such as fat suppression and diffusion restriction.
he mpMRI studies were acquired at our institution using various MR
canners (Siemens and Philips) and a variety of exam protocols, and
odel training was done with the clinical annotations of LAD and

AD measurements by radiologists directly. At test time, data presented
o the model could come from either the T2FS series alone, or from
he blending of any available T2FS and DWI series that were co-
egistered. Contrary to prior work (Zhao et al., 2020; Wang et al.,
022), we also used full-size input data for training and testing. The
ain contributions of this work include the use of ILL to diversify the

nput data samples the model encountered during training, and the
ntegration of the complete IoU loss (Zheng et al., 2022) in the DyHead
ramework. With their inclusion, our model did not rely on the presence
2

f both T2FS and DWI series in the mpMRI study.
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2. Materials and methods

2.1. Data

The Picture Archiving and Communication System (PACS) at the
NIH Clinical Center was queried for patients who had undergone MRI
imaging between January 2015 and September 2019. Initially, a total
of 383 patients (224 males and 159 females with ages between 6
and 85 years) and 500 mpMRI studies were identified. The radiology
report associated with a study was obtained, and a natural language
processing algorithm developed by Peng et al. (2020) extracted the
presence of metastatic and/or non-metastatic LNs, extent, and size
measurements. The results from the NLP algorithm were validated by
a radiologist for inclusion into the data cohort. Each study contained
various series such as T2 weighted (T2WI) series, T2 fat suppressed
(T2FS) series, diffusion weighted imaging (DWI) and apparent diffusion
coefficient (ADC) maps. However, the studies did not always contain
DWI and ADC series. These studies were acquired using a variety of
MRI scanners (Siemens, Philips) and exam protocols. At our institution,
radiologists sized the LNs by scrolling back and forth across the slices
in the T2FS series, matched the appearance of suspicious nodes in the
DWI series, and measured the largest LN extent present on a single 2D
slice in the T2FS series according to the routine clinical protocol for
measuring LNs. LNs were measured with either the long axis diameter
(LAD) or short axis diameter (SAD), or both simultaneously. As it is
cumbersome for radiologists to measure the full 3D extent of suspicious
LNs during a busy clinical day, the primary measurement of LAD and
SAD was prospectively made only on a single 2D slice. If only a single
measurement (LAD or SAD) was done, a radiologist conducted a quality
check to ensure that both LAD and SAD measurements were available.

Next, the studies containing both T2FS and DWI series were identi-
fied. In these studies, there were often multiple DWI sequences (mini-
mum 1, maximum 3) acquired with low (0–200 s∕mm2), intermediate
(400–800 s∕mm2), and high (800–1400 s∕mm2) b-values. Higher b-
values permit the sensing of slow moving water molecules that dif-
fuse shorter distances within tissue. In contrast to normal tissue, the
diffusion of water molecules in abnormal LNs is restricted by cell
membranes, and this corresponded to a higher signal intensity in areas
with diffusion restriction when visualized with DWI series. For our
work, we exploited all the available DWI sequences with different b-
values. This process yielded 232 patients (145 males and 87 females
with ages between 6 and 80 years) with 271 mpMRI studies wherein
both T2FS and DWI series were available. As the radiologists measured
LNs in the T2FS series only, the DWI series were registered to T2FS to
transfer the LN annotations. A rigid registration method available in the
open-source Insight ToolKit (ITK) (McCormick et al., 2014) was used
to generate the co-registered volumes with the same origin, resolution,
and spacing. Then, the studies were randomly divided on a patient-level
into ∼68% train (161 patients, 183 studies, 440 slices), ∼8% validation
(15 patients, 22 studies, 53 slices), and ∼24% test (56 patients, 66
studies, 851 slices) splits. In order to provide quantitative results for
this work, the 3D extent of all LNs in the test set were fully labeled
with bounding boxes by the same radiologist who conducted the afore-
mentioned quality check. AJCC Tumor, Node, and Metastasis (TNM)
guidelines (Amin et al., 2017) was used by the radiologist for the full
3D extent annotation. However, the train and validation splits consisted
of only the prospective 2D measurements made by the radiologist that
originally read the study. N4 bias normalization (Tustison et al., 2010)
was subsequently performed on the co-registered sequences, followed
by normalization to [1%, 99%] of the voxel intensity range (Kociołek
et al., 2020), and histogram equalization (Chen et al., 2015) to boost
the contrast between bright and dark structures in the volumes. The
resulting data had various dimensions in the range of (256∼640) ×

(192∼640) × (18∼60) voxels.
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Fig. 1. Flowchart of the proposed computed-aided detection (CAD) pipeline. First, T2FS and DWI series in an mpMRI study were co-registered and then blended together using
Intra-Label LISA (ILL). Next, three consecutive slices from the resulting volume were collated to form a 3-channel image. The images are then fed to the Dynamic Head (DyHead)
detector based on the ATSS framework, which predicted bounding boxes for potential lymph nodes (LNs) in each slice of the volume. Green boxes: ground truth, yellow: true
positives, red: false positives. Feature maps that are used by the network for prediction are shown. Compared to the feature maps generated by the backbone (Swin Transformer) of
the DyHead network, the scale-aware attention module distinguishes the correct scales of two neighboring LNs close to liver, the spatial-aware attention module correctly identifies
the distinct spatial locations of the LNs, and the task-aware attention module focuses the learning on specific representations of the LNs (e.g., bounding boxes, centers etc.). The
2D LN candidates were then merged into 3D based on their confidence scores as well as their IoU overlaps with boxes in adjacent slices. Figure best viewed in the PDF in color.
2.2. Selective augmentation

For the pipelines in previous approaches (Zhao et al., 2020; Lu et al.,
2018) to work, both the T2FS and DWI series needed to be present.
However, the presence of both sequences cannot always be guaranteed
as a complete MRI workup is not always deemed medically necessary
by the referring physician or the radiologist, and thus certain sequences
may not be acquired. Therefore, it is necessary to take full advantage of
the available sequences in an mpMRI study for training a LN detector.
In this work, we use a recently proposed method by Yao et al. (2022)
to learn invariant representations via selective augmentation (LISA).
LISA interpolated the training data samples that have the same label,
but were sampled from different domains (T2FS and DWI). Since the
T2FS and DWI sequences are co-registered to each other, the label
(bounding boxes) from the T2FS sequence can be transferred to DWI.
Specifically, we use Intra-Label LISA (ILL) to selectively augment our
training data; we blend the T2FS and DWI sequences together so that
traits of both series are visible in the same volume. The blending is
rooted in the MixUp (Zhang et al., 2018) and CutMix (Yun et al.,
2019) techniques, which linearly interpolate training data samples
and remove any correlations (Cramér, 2016) between the domain and
labels. Through this simple trick, the LN detector can learn invariant
predictors for LNs. Formally, assume that two data samples (𝑥𝑖, 𝑦𝑖, 𝑑𝑖)
and (𝑥𝑗 , 𝑦𝑗 , 𝑑𝑗) are drawn from two distinct domains 𝑑𝑖 and 𝑑𝑗 . Two
samples can be linearly interpolated according to:

𝑥𝑚 = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗 and 𝑦𝑚 = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑗 (1)

�̂� ∶= argmin
𝜃∈𝛩

E{(𝑥𝑖 ,𝑦𝑖 ,𝑑𝑖),(𝑥𝑗 ,𝑦𝑗 ,𝑑𝑗 )∼𝑃 }
[

𝑙(𝑓𝜃(𝑥𝑚), 𝑦𝑚)
]

(2)

where 𝜆 ∈ [0, 1] is the interpolation ratio sampled from a Beta dis-
tribution 𝐵𝑒𝑡𝑎(𝛼, 𝛽), and dictates the strength of blending for selective
augmentation. Since the label (bounding box) is the same 𝑦𝑖 = 𝑦𝑗 for
the co-registered T2FS and DWI series, interpolation of the data samples
results in volumes where characteristics of both domains are partially
present and any spurious correlations that exist between the domains
3
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and labels are removed. This gives rise to an empirical risk minimiza-
tion setting as in Eq. (2) where given a training distribution 𝑃𝑡𝑟, a loss
function 𝑙 is used to train a model 𝑓𝜃 to optimize its parameters 𝜃 ∈ 𝛩.
As the parameters of the beta distribution govern the blending ratio 𝜆,
it permitted the use of either the T2FS sequence alone or a combination
of T2FS and DWI series. If a study did not contain the DWI series,
then ILL was not applied. The need for both series to be present in
an mpMRI study was thereby circumvented, and it enabled the model
to encounter diverse examples during training to enhance robustness
against noise at the test time. Experiments conducted in Section 3 attest
to the advantage of using our simple selective augmentation approach
for LN detection. Examples images using ILL-based blending are shown
in Fig. 2.

2.3. Model

The standard design of an object detector consists of a backbone
network to extract features, followed by a network head tasked with the
classification and localization of objects seen in an image. For identify-
ing specific regions of interest (ROIs) in medical images, there are many
considerations to take into account while designing a detection head.
First, the scale of structures is important as they can be large (e.g. liver)
or small (e.g., lymph nodes, lesions). Second, there can be multiple
ROIs present close to each other, and distinguishing them individually
is critical for many tasks (e.g., organ/lesion volume measurements).
Finally, ROIs can be represented in many ways (e.g., bounding boxes,
centers, segmentation masks); the ROI representation plays a crucial
role in the set of tasks the network is assigned to solve.

In this work, we employed the recently proposed detection network
called Dynamic Head or DyHead (Dai et al., 2021). DyHead com-
bined the scale-, spatial-, and task-aware attention mechanisms into
the detection head of the adaptive training sample selection (ATSS)
framework (Zhang et al., 2020). The input to the ATSS + DyHead model
after the co-registration process and blending with ILL was a 2.5D
image that contained three consecutive slices from the blended volume
with the slice in the middle containing the annotated LN. The feature
from ClinicalKey.com by Elsevier on March 12, 2024. 
opyright ©2024. Elsevier Inc. All rights reserved.
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Fig. 2. Our proposed Dynamic Head (DyHead) model detected a large lymph node (LN) of size 1.3 cm straddling the kidney. Results are shown for 5 consecutive slices. The
mpMRI study used here contained a T2 Fat Suppressed (T2FS) series and a Diffusion Weighted Imaging (DWI) series. In each row, the T2FS slice is on the left, a DWI slice is in
the middle, and a blend of T2FS and DWI slices is on the right. The blended slice was generated by first co-registering the T2FS and DWI series, and then blending them together
using Intra-Label LISA (ILL). Our proposed DyHead model was trained on these blended volumes to predict 2D LN candidates in each slice. Next, our 3D clustering technique
combined the 2D predictions into 3D, and the resulting boxes were overlaid for visualization. Green boxes: ground truth, yellow: true positives, red: false positives. The text below
each detected box, e.g. ‘‘52 | 49’’, describes the highest confidence score across all elements of the 3D prediction followed by the confidence score of the candidate box detected
in the current slice. Figure best viewed in the PDF in color.
maps {𝐹𝑖}𝐿𝑖 from each of the 𝐿 levels of the backbone network (Lin
et al., 2017) were resized through up-/down-sampling to the shape
of the median level features. This resulted in a 4D feature tensor of
dimensions 𝐿 × 𝐻 × 𝑊 × 𝐶, where 𝐻 and 𝑊 are the height and
width of a feature map respectively, and 𝐶 is the number of output
channels for the median FPN level. The 4D tensor was then reshaped
into a 3D tensor of dimensions 𝐿 × 𝑆 × 𝐶, where 𝑆 = 𝐻 × 𝑊 , such
that the different attention mechanisms could be applied across the
𝑙𝑒𝑣𝑒𝑙 × 𝑠𝑝𝑎𝑐𝑒 × 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 dimensions respectively.

Feature maps at different levels of the backbone inherently capture
the variety of sizes and scales of the LNs in the mpMRI studies used in
this work. Therefore, the scale-aware attention module was applied on
the 𝑙𝑒𝑣𝑒𝑙 dimension and it dynamically changed the relative importance
placed on the various levels of the backbone network. Moreover, LNs
can straddle major anatomical structures (e.g., liver, bowel, blood
vessels) and appear in close proximity to each other. The spatial-
aware attention module applied to the 𝑠𝑝𝑎𝑐𝑒 dimension enabled the
network to discriminate LNs in different spatial locations. Feature maps
at different levels could also be bundled together for effective localiza-
tion. Finally, specific sub-tasks, such as bounding box and center-point
4
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regression, were critical to achieve the main task of detecting the 3D
extent of LNs. The task-aware attention module implemented on the
𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 dimension emphasized the significance of certain channels
more for a particular task. As shown in Fig. 1, the different feature
maps extracted from the different attention mechanisms showcased the
scale-awareness to the relative size of various LNs, spatial-awareness to
the location of each LN, and task-awareness with respect to bounding
box and center-point regression.

To generate informative feature maps for DyHead, we used the
general-purpose Swin Transformer backbone (Liu et al., 2021) in the
ATSS + DyHead framework instead of the original ResNet-50 backbone.
The rationale behind this was due to the hierarchical feature maps
computed by the Swin transformer; they have the same dimensions as
those obtained from standard backbones, such as ResNet (He et al.,
2016) and FPN (Lin et al., 2017). These hierarchical feature maps
were estimated by first splitting the input image into small-sized image
patches in shallower layers and merging neighboring patches in deeper
layers. A fixed number of image patches were then taken to constitute
a window, within which self-attention was computed locally. Shifted

window partitioning also introduced connections across neighboring
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windows that increased the representation modeling power while also
maintaining linear computation complexity. For more details on the
implementation, we refer the reader to Liu et al. (2021). Through
experiments described in Section 3, we show that the model was able to
achieve higher precision and sensitivities at different FP with the Swin
transformer backbone.

Additionally in this work, we integrated the complete-IoU (CIoU)
loss proposed by Zheng et al. (2022) in the ATSS framework instead
of the generalized IoU (GIoU) loss (Rezatofighi et al., 2019). The
GIoU loss focused primarily on the overlap area between two boxes
and tried to maximize the overlap value during the training process
leading to a longer convergence time. On the other hand, CIoU loss
considered geometric factors related to the box regression, such as
overlap area, normalized center-point distance, and aspect ratio. This
is of particular importance as LNs in mpMRI have myriad shapes and
appearances, making the task of distinguishing them and regressing
their box coordinates challenging. After the model had been trained,
Weighted Boxes Fusion (WBF) (Solovyev et al., 2021) was used to
combine the various predictions from the best epochs of multiple runs
of the same model. LN detection results by the DyHead model on 3
consecutive slices from a volume are shown in Figs. 2 and 3.

2.4. 3D prediction generation

Our DyHead model predicted LN candidates in every slice of the
blended volume, and these 2D proposals were later post-processed into
3D predictions. Each 2D prediction contains the coordinates of the
enclosing bounding box of the potential LN along with a confidence
score. Next, we follow the Kalman filter-based bounding box tracking
approach as proposed in Yang et al. (2019) and Cai et al. (2021). First,
we filter the 2D predictions based on their confidence score and keep
a prediction if it has a confidence ≥10%. Our rationale was to remove
only the boxes with low scores while preserving those that represent a
true LN detection despite their scale in the current slice. Next, as seen
in Fig. 1, we created the 3D clusters by stacking the 2D predictions
together from pairs of adjacent slices when their IoU overlap score was
≥25%. Contrary to Yang et al. (2019), we chose this threshold value
as it accounted for the large variations in voxel sizes (especially along
the z-axis) for volumes acquired by different MRI scanners. Finally, we
filtered the clusters based on the maximum confidence score available
in that cluster and removed those that did not cross a confidence
threshold of 30%. We chose this value in order to keep the number
of 3D predictions manageable.

3. Experiments

3.1. Comparison with state-of-the-art approaches

Our main experiment 𝐸𝑆𝐴 used co-registered T2FS and DWI se-
quences, blended them through ILL, and detected LN in them. 2.5D
images were extracted from the blended volume with each image
containing three consecutive slices from the volume with the annotated
LNs present in the slice in the middle. This approach mimicked prior
work in Debats et al. (2019), where the authors detailed that the in-
plane slice provided the most salient information necessary for LN
detection. We compared our method against other works: (1) Existing
state-of-the-art object detectors, such as Faster RCNN by Ren et al.
(2015), VarifocalNet or VFNet by Zhang et al. (2021) and DDOD
by Chen et al. (2021). (2) We contrasted our results against the re-
implementation in Zhao et al. (2020), in which the authors cropped
the 2.5D images to 256 × 256 pixels encompassing the LNs in the
rectal region. (3) We compared our results against those published
by Wang et al. (2022), wherein a universal LN detector was trained
with only T2FS volumes, from which 2.5D images were constructed
5

for training. (4) Finally, we followed the approaches proposed in prior r
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works by Mathai et al. (2022a, 2021, 2022a,b, 2023), and created an
ensemble from the object detectors for LN detection.

For consistent comparison across all works, we did not crop our
slices and used the full-sized images as training inputs. Both Zhao et al.
(2020) and Wang et al. (2022) used a Mask RCNN model for detection
and segmentation of LNs. However, we did not possess segmentation la-
bels in this work. In order to conduct a fair comparison, we used a close
relative in the Faster RCNN model and re-implemented their works
after a grid search to find the best hyper-parameters. Additionally, Zhao
et al. (2020) conducted four experiments with different combinations
of T2FS and DWI slices including: (1) 3-slices of only T2FS (𝐸𝑇 ), (2) 3-
lices of only DWI (𝐸𝐷), (3) 1-slice of T2FS and 2-slices of DWI (𝐸12),
nd (4) 2-slices of T2FS and 1-slice of DWI (𝐸21). We also performed the
ame experiments to achieve fair comparisons across the state-of-the-art
bject detectors.

.2. Comparison of blending parameters for selective augmentation

One of the main contributions in this work is the selective aug-
entation of the data through blending of co-registered T2FS and DWI

eries. Since the Beta distribution governed the blending of the two
equences, we evaluated the effect of the choice of its parameters. The
yHead network was trained with an interpolation ratio 𝜆 selected from

he beta distribution 𝐵𝑒𝑡𝑎(𝛼, 𝛽) with 𝛼 = 2 and 𝛽 = 2. Other parametric
hoices that were tested included 𝐵𝑒𝑡𝑎(1, 1), such that 𝜆 was drawn
rom a uniform distribution as examined by Yun et al. (2019), and
𝑒𝑡𝑎(4, 4). We also evaluated the effect of drawing 𝜆 from a 𝐵𝑒𝑡𝑎(60, 10)
istribution that heavily favored the T2FS series.

.3. Comparison of network backbone and IoU-based losses

Two other contributions that were made in this work were the
tilization of the Swin Transformer backbone in the ATSS framework
nstead of the ResNet-50 backbone, and the complete IoU (CIoU) loss
nstead of the traditional IoU losses (e.g., IoU, GIoU) respectively. Our
im was the test the information provided by the hierarchical feature
aps generated by the Swin Transformer backbone. We also wanted to

ssess the utility of the geometric factors (aspect ratio, overlap area,
nd normalized center-point distance) considered by the CIoU loss
ormulation in contrast to the traditional IoU-based losses that mainly
ocused on maximizing the overlap area between two boxes.

.4. Out-of-distribution comparison

We wanted to evaluate the robustness of the DyHead model to
ut-of-distribution (OOD) data under the condition of domain shift.
owever, the underlying distributions of the Siemens (Aera, Verio,
ioGraph mMR) and Philips (Achieva) scanners were unknown in this
ork. Diving deeper into our dataset (232 patients, 271 studies), we

ound that the data acquired by the Siemens Aera scanner comprised a
ajor part of our dataset (204 patients, 236 studies). There were lim-

ted data quantities from other scanners: Siemens Verio (14 patients, 15
tudies), Siemens Biograph mMR (11 patients, 11 studies), and Philips
chieva (3 patients, 9 studies). Therefore, we created an experiment
here only the data from the Siemens Aera scanner was used to train

he DyHead model, and it was tested on data from the remaining MRI
canners.

.5. Implementation

In our work, 2.5D (3-channel) images were used to train the detec-
ors, which were implemented with the mmDetection framework (Chen
t al., 2019). Apart from the use of ILL-based blending, standard data
ugmentation was performed, such as random flips, crops, shifts and
otations in the range of [0, 32] pixels and [0, 10] degrees respectively,

andom contrast and gamma adjustments. ResNet-50 was the backbone
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Fig. 3. A normal sized LN (8 mm) straddling the kidney was detected on 3 consecutive slices. Each row shows the predictions obtained from one of five different DyHead models
trained with different data combinations. In row (a), the DyHead model was trained with only T2FS series, whilst in row (b), it was trained on only DWI series. In row (c), a
combination of 1 slice of T2FS and 2 slices of DWI series respectively was used. In row (d), a combination of 2 slices of T2FS and 1 slice of DWI series respectively was used.
Finally in row (e), the DyHead model was trained with slices extracted from the blended volume generated with selective data augmentation. Green boxes: ground truth, yellow:
true positives, red: false positives. The text below each detected box, e.g. ‘‘51 | 48’’, describes the highest confidence score across all elements of the 3D prediction followed by
the confidence score of the candidate box detected in the current slice. Notice that there are fewer FP predictions in row (e) with the proposed selective data augmentation in
contrast to the other data combinations. Figure best viewed in the PDF with color.
(pre-trained with MS COCO weights) used for Faster RCNN, VFNet,
and DDOD. A grid search was run across the different hyper-parameter
settings to obtain the optimal values for the different models tested
in this work. The summary of these hyper-parameters are shown in
Table 1. We ran a 5-fold cross-validation scheme where each model was
executed 5 times with different training data subsets. The test set was
held-out and kept the same across the different folds. We saved the top-
5 checkpoints with the lowest validation loss from each run, and used
the checkpoint from each run with the lowest loss (total of 5 model
checkpoints) for testing. Results presented in Table 2 were an average
of 5-fold cross-validation. All experiments were run on a NVIDIA DGX
workstation running Ubuntu 18.04LTS with 4 T V100 GPUs. Evaluation
6
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was performed at an IoU threshold of 25% to be consistent with prior
work as in Zhao et al. (2020), Wang et al. (2022) and Mathai et al.
(2022b).

3.6. Metrics

We utilized prospective 2D measurements of the LAD and SAD made
by radiologists at our institution. This is because the radiologists only
annotated the extent of a suspicious LN in one slice of the T2FS series,
and did not annotate the 3D extent due to the time constraints of a
busy clinical day. Prior approaches (Zhao et al., 2020; Wang et al.,
2022) also operated on these 2D measurements, but they reported
from ClinicalKey.com by Elsevier on March 12, 2024. 
opyright ©2024. Elsevier Inc. All rights reserved.
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Fig. 4. A small LN (6 mm) in the pelvis was detected on 3 consecutive slices. Each row corresponds to the predictions obtained from a different detector: (a) Faster RCNN, (b)
VFNet, (c) DDOD, and (d) DyHead. Green boxes: ground truth, yellow: true positives, red: false positives. The text below each detected box, e.g. ‘‘78 | 72’’, describes the highest
confidence score across all elements of the 3D prediction followed by the confidence score of the candidate box detected in the current slice. Notice that there are fewer FP
predictions detected by DyHead in row (e) compared to the detectors. Figure best viewed in the PDF in color.
Table 1
Hyper-parameter settings and runtime information for the various LN detection
models.

Setting Faster RCNN VFNet DDOD DyHead

Backbone ResNet-50 ResNet-50 ResNet-50 Swin
Batch size 8 4 8 2
Epochs 12 12 12 12
Learning rate 1𝑒−3 1𝑒−3 1𝑒−4 5𝑒−5

Activation function ReLU ReLU ReLU ReLU
Optimizer SGD SGD SGD AdamW

# parameters (million) 41.7 M 75.2 M 86.1 M 158.7 M
GFLOPs 19.3 106.1 134.8 327.6
Inference time (s/vol) 3.1 4.7 5.3 6.2

their results based on these 2D measurements. This posed an issue as
it did not reflect the true performance of a LN detector. Any correct
predictions made by the network on any unmeasured LN in the same
slice or the adjacent slice(s) would be counted as false positives when
they should actually be counted as true positive predictions instead.
Furthermore, we believe that automated methods should process the
entire volume and report results on a volumetric level as opposed to a
slice-based level. These results will reflect the true nature of the lymph
node detection performance, and to that end, we adopt the pseudo-3D
7

Downloaded for Anonymous User (n/a) at Harvard University 
For personal use only. No other uses without permission. C
(P3D) IoU metric proposed by Cai et al. (2021). Specifically, we denote
the slice containing the 2D annotation by the radiologist as 𝑧 and the
corresponding bounding box that resulted from that measurement as
(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧, 𝑧). We represent a 3D prediction by (𝑥∗1, 𝑥

∗
2, 𝑦

∗
1, 𝑦

∗
2,

𝑧∗1, 𝑧
∗
2). The P3D IoU metric assigns a 3D prediction as a true positive if

and only if 𝑧∗1 ≤ 𝑧 ≤ 𝑧∗2 and the 𝐼𝑜𝑈
[

(𝑥1, 𝑥2, 𝑦1, 𝑦2), (𝑥∗1 , 𝑥
∗
2 , 𝑦

∗
1 , 𝑦

∗
2)
]

≥ 50%.
Otherwise, the 3D prediction is a false positive. For more information
regarding the P3D IoU metric, we refer the reader to Cai et al. (2021).
We also quantified the performance with the mean average precision
(mAP).

3.7. Statistical analysis

Statistical analysis of the results was performed using the boot-
strapping method proposed by Samuelson et al. (2007), Platel et al.
(2014) and Samulski and Karssemeijer (2011). We used the area un-
der the Free-response Receiver Operating Characteristic (FROC) curve
(𝐴𝑧) as the performance measure. Patient studies were sampled with
replacement from the test dataset; each bootstrapped sample consisted
of 56 studies (only 1 study per patient) randomly selected from the
test dataset. If a patient had >1 study, then 1 study was randomly
chosen. The two LN detection methods being compared were run on the
sample to generate two FROC curves, and the difference between the
from ClinicalKey.com by Elsevier on March 12, 2024. 
opyright ©2024. Elsevier Inc. All rights reserved.
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Table 2
Performance comparison of different methods on the 3D test dataset. ‘‘Exp’’ stands for the experimental abbreviation and ‘‘Mode’’ describes the {T2FS, DWI} data combination
mode. ‘‘SA’’ and ‘‘NSA’’ indicate selective and no selective augmentation respectively, while ‘‘ILL’’ stands for Intra-Label LISA. ‘‘S’’ describes Sensitivity @[0.5, 1, 2, 4] FP. Bold
values indicate best results.

# Method Exp Mode mAP S@0.5 S@1 S@2 S@4

1 Faster RCNN (Ren et al., 2015) 𝐸𝑆𝐴 ILL 48.7 32.7 45.5 57.4 68.3
2 VFNet (Zhang et al., 2021) 𝐸𝑆𝐴 ILL 51.1 31.7 46.5 60.4 74.8
3 DDOD (Chen et al., 2021) 𝐸𝑆𝐴 ILL 49.9 26.7 42.1 59.4 71.3

4 Wang 2022 (2D) (Wang et al., 2022) 𝐸𝑇 T2FS only 40.3 30.1 36.0 46.3 57.3
5 Zhao et al. (2020) 𝐸21 NSA 43.3 24.3 39.6 55.9 65.4
6 Ensemble (1–4) (Mathai et al., 2022b) 𝐸𝑆𝐴 ILL 50.3 33.2 46.5 55.9 73.3

7 DyHead (Ours) 𝐸𝑆𝐴 ILL 53.5 33.6 47.5 62.9 77.7
8 DyHead (Ours on T2FS) 𝐸𝑆𝐴 ILL 53 32.6 45.9 57.4 75.8
Table 3
Out-of-distribution performance comparison of the DyHead model trained on data acquired from the Siemens
Aera scanner and tested on other scanners. ‘‘Exp’’ stands for the experimental abbreviation and ‘‘Mode’’
describes the {T2FS, DWI} data combination mode. ‘‘SA’’ indicates selective augmentation, while ‘‘ILL’’
stands for Intra-Label LISA. ‘‘S’’ describes Sensitivity @[0.5, 1, 2, 4] FP.
# Scanner Exp Mode mAP S@0.5 S@1 S@2 S@4

1 Siemens Verio 𝐸𝑆𝐴 ILL 57.7 58.62 68.9 75.9 79.3
2 Siemens BioGraph mMR 𝐸𝑆𝐴 ILL 54.2 46.7 60.1 66.7 80.1
3 Philips Achieva 𝐸𝑆𝐴 ILL 65.3 50.0 62.6 71.8 75.4
t
v
i
L
c
i
(
t
w
s
s

4

a
p
m
m
c
b
s
a
u
o
w
D
a
a

4

r
F
s
a
t
m
h
B
o

area under the curves ▿𝐴𝑧 was estimated. The bootstrapping method
as run 1000 times and generated 1000 values for ▿𝐴𝑧. The 𝑝-values
ere defined as the fraction of values that were negative or zero. Any
ifference in performance was considered significant if 𝑝 < 0.05.

. Results

.1. Results from state-of-the-art comparisons

Based on prior work by Zhao et al. (2020), Wang et al. (2022) and
athai et al. (2022b), a clinically acceptable result for LN detection
eant a sensitivity of 65% at 4–6 FP per volume. Fig. 5 displays the

ROC curves for the different state-of-the-art object detectors tested in
his work; we show the effects of selective data augmentation with ILL
longside the various data combinations that were proposed by Zhao
t al. (2020). Table 2 summarizes the results for the various detec-
ors. DyHead trained with selective data augmentation (𝐸𝑆𝐴) achieved
he best LN detection performance of 53.5% mAP and 77.7% at 4
P/volume over the other detectors (𝑝 < 0.05). Fig. 5 shows that the
xperiment 𝐸𝑇 that used the T2FS series alone provided sensitivities of
60%–70% at 4 FP/vol across the networks, while the experiment 𝐸𝐷

hat used the DWI series alone yielded low LN detection sensitivities
f 55%–65% at 4FP/vol across the different detectors (𝑝 < 0.05).
hese results are not surprising as the tissue structures in DWI series
ppear diffused with poor spatial resolution in contrast to the T2FS
eries. Furthermore, Zhao et al. (2020) found in their experiment 𝐸12
hat the data combination of 1 T2FS slice and 2 DWI slices worked
est. Contrary to their findings, we observed that the experiment 𝐸21
ith the data combination of 2 T2FS slices and 1 DWI slice generally
erformed better than 𝐸12, 𝐸𝑇 and 𝐸𝐷 (𝑝 < 0.05). This may be due to
he contextual information available to the network from the provision
f full-sized input images, instead of the cropped images around the
ectum as implemented by Zhao et al. (2020). Furthermore, we passed
nly T2FS data (no blending) as input to the DyHead model (trained
ith ILL-based blending), and noticed that the results (Table 2, rows 7
nd 8) were similar. These results support our idea that the model could
e trained with studies containing both T2FS and DWI series, but it did
ot require the DWI series to be present at test time.

As Wang et al. (2022) also attempted to universally detect LN in
2FS MRI, we compared our results against their work. We observed
n increase in mAP of ≥10% (53.5% vs. 40.3%) and a sensitivity
mprovement of ≥19% (77.7% vs. 57.3%) at 4 FP/volume with 𝑝 < 0.05.
lthough these results were obtained after the reimplementation of
8
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heir work with a Faster-RCNN model, comparison with their published
alues was not possible as they provided results in terms of 5 FP/image
nstead of 4 FP/volume. Finally, Mathai et al. (2022b) also detected
N in T2FS MRI using an ensemble of neural networks and we also
ompared our results against their work. We noticed an improvement
n mAP of ≥3% (53.5% vs. 50.3%) and a sensitivity increase of ≥4%
77.7% vs. 73.3%) at 4 FP/volume (𝑝 < 0.05). Fig. 4 visually illustrates
he LN detection results by the various LN detectors compared in this
ork on 3 consecutive T2FS slices in an mpMRI study. Figs. 2 and 3

how the LN detection results of the DyHead model on 3 consecutive
lices in an mpMRI study respectively.

.2. Results of ablation studies

First, we focused our attention on the ATSS + DyHead model
nd present the evaluation results for the choice of Beta distribution
arameters used in ILL in Fig. 6(a). We noted an improvement in
AP of ∼2% and sensitivity of ∼4.5% at 4 FP/vol when the DyHead
odel was trained with the Beta distribution 𝐵𝑒𝑡𝑎(2, 2) over other

hoices. Next, we compared the effect of using the Swin transformer
ackbone network in place of the ResNet-50 backbone network. As
hown in Fig. 6(b), we saw a rise in mAP of ∼8% (53.5% vs. 44.6%)
nd sensitivity of ∼10% at 4 FP/vol (77.7% vs. 67.3%) through the
se of the Swin transformer backbone, thereby attesting to the utility
f the generated hierarchical feature maps for LN detection. Similarly,
e compared the integration of the complete-IoU (CIoU) loss in the
yHead network against the traditional IoU-based losses, e.g., GIoU
nd IoU. As seen in Fig. 6(b), we noticed an increase of ∼5% in mAP
nd ≥4% in sensitivity at 4 FP/vol with the use of CIoU loss.

.3. Results of out-of-distribution study

Table 3 summarizes the experimental results that evaluated the
obustness to out-of-distribution data from other MRI scanner types.
ig. 7 showcases the detected LNs in images extracted from mpMRI
tudies acquired by different scanners. Our DyHead model was able to
chieve comparable performance in terms of mAP and sensitivity across
he data subsets from different scanners. The model had the highest
AP of ∼65% for data from the Philips Achieva scanner while the
ighest sensitivity of ∼80% at 4 FP/vol was achieved for the Siemens
ioGraph mMR scanner. Overall, the results attest to the robustness
f our DyHead model in detecting LNs by handling data arising from

ifferent MRI scanners.
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Fig. 5. FROC curves for the different state-of-the-art object detectors, such as Faster RCNN, VFNet, DDOD and DyHead. The purple curves depict the sensitivity at different false
positive rates for each network when they were trained with the blended volumes yielded by intra-label LISA (ILL). We also show the comparative results of the networks trained
with different data combinations (see Section 3.1). Note that training with blended volumes consistently outperformed the other experiments (𝑝 < 0.05).

Fig. 6. (a) FROC curves for the ablation studies of the beta distribution 𝐵𝑒𝑡𝑎(𝛼, 𝛽) parameter choice used in the ILL-based volumetric blending technique employed in this work. (b)
FROC curves for the ablation studies of the complete IoU (CIoU) loss function used in this work in contrast to the traditional IoU-based losses, as well as the ablation experiment
for the ResNet-50 backbone used in the ATSS framework. Note that the purple curves indicating the modifications made to the ATSS + Dyhead framework used in this work
consistently outperformed the other methods at a sensitivity measure of 4 FP/volume (𝑝 < 0.05).
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Fig. 7. Peri-portal LNs in the hepatic region shown in these figures were detected by the DyHead model, which was trained on data obtained from a Siemens Aera MRI scanner
and tested on data acquired with: (a) Siemens Verio MRI scanner, (b) Siemens BioGraph mMR scanner, and (c) Philips Achieva MRI scanner respectively. Each row shows three
slices: (1) the T2FS slice, (2) the DWI slice, and (3) the slice obtained by blending T2FS and DWI via selective augmentation. Green boxes: ground truth, yellow: true positives.
The text below each detected box, e.g. ‘‘51 | 51’’, describes the highest confidence score across all elements of the 3D prediction followed by the confidence score of the candidate
box detected in the current slice. Notice that the LNs were correctly identified in all volumes despite the marked voxel intensity variations between the T2FS and DWI series across
the different scanner types. In the case of the DWI series acquired by the Philips Achieva scanner, motion of the patient caused the signal degradation as shown in the DWI slice.
This signified the utility of the proposed blending technique used in this work and the subsequent robustness of the trained model to out-of-distribution data.
5. Discussion

In current clinical practice, localization and measurement of LNs in
mpMRI studies is a repetitive and cumbersome task that is routinely
performed by radiologists. Universal LN detection with an automated
CAD pipeline, such as the one proposed in our work, can speed up
the LN localization as the ensuing measurements help to differentiate
metastatic from non-metastatic nodes. Congruent with a typical clinical
scenario, the full mpMRI workup for patients may not always be
necessary, and therefore the studies did not always contain DWI and/or
ADC sequences. Additionally, a variety of MRI scanners are used at
different institutions for acquiring patient exams. Contrary to the prior
work for mpMRI-based LN detection (Zhao et al., 2020; Lu et al., 2018)
that necessitated the presence of both sequences for LN detection, we
designed a CAD pipeline that was trained on mpMRI studies containing
T2FS and DWI series, but did not require the diffusion sequence to
be available at test time. We co-registered the T2FS and DWI series,
and subsequently performed selective data augmentation by blending
the two series together using an interpolation ratio 𝜆 that was drawn
from a Beta distribution 𝐵𝑒𝑡𝑎(2, 2). Blending the two series together
promoted the use of complementary information available in both
series, such as fat suppression and diffusion restriction. This closely
mimicked the current clinical practice where radiologists referred to
co-registered DWI sequences for confirmation of the LN presence in the
T2FS series. Next, 2.5D images were constructed from the volume for
training a DyHead detector built upon the ATSS framework. Our CAD
10
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pipeline generated the full 3D extent for detected LNs in the volume
and executed in <3 seconds per volume.

Zhao et al. (2020) indicated that the size of the LNs played a role
in their model’s decreased detection performance. From prior clinical
work by Taupitz (2007), generally LNs with a SAD ≥ 10 mm are
suspicious for metastasis. We used this reported size range and stratified
the performance of our DyHead model according to the size of LNs
as shown in Table 4. Similar to prior work (Zhao et al., 2020; Wang
et al., 2022), we observed that the detection sensitivity of DyHead
model increases with the increase in size of the LNs; this indicated that
larger LNs were easier to detect in contrast to smaller ones (∼85% vs.
∼68%). Despite smaller LNs decreasing the detection performance of
the model, it is especially important to detect LNs with a SAD ≥ 8 mm
(to provide a cushion for inter-observer variability) as it meets future
clinical needs. We show some examples of the detection performance of
our CAD pipeline for LNs of different sizes in Figs. 2, 3, 4, and 7. A large
LN of size 1.3 cm is shown straddling the region in the kidneys in Fig. 2,
while a small LN of size 8 mm is shown in the same region in Fig. 3.
The ground-truth is shown with a green box, while the predicted LN is
shown in yellow. A small LN (6 mm) in the pelvic region is shown in
Fig. 4, while small peri-portal LNs present in the hepatic area are shown
in Fig. 7. Moreover the 2D predictions in Fig. 1 show two peri-portal
LNs in the hepatic area that are visualized at different scales. As shown
in the figures, the T2FS and DWI series offer complementary sources of
information for LN detection.
from ClinicalKey.com by Elsevier on March 12, 2024. 
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Table 4
Comparison of detection performance of the DyHead detector according to the size of
the LN. ‘‘S’’ describes Sensitivity @[0.5, 1, 2, 4] FP.

# Size mAP S@0.5 S@1 S@2 S@4

1 <1 cm 42 31.2 45.3 53.1 67.9
2 ≥1 cm 56.2 32.3 49.9 74.8 85.2

However, our results do indicate some false positives (as shown by
ed boxes in Figs. 1 and 3) mainly around the hepatic vein and collect-
ng systems of the kidneys. Insufficient registration of the volumes is a
otential reason for false positives as we only rigidly register the T2FS
nd DWI volumes to roughly align them and to have consistent spacing,
rigin, and dimensions. Other factors include the similar intensity (iso-
ntensity) of the LN on high b-value DWI to surrounding structures,
uch as the bowel, and the overlap of LN with vessels that contribute
o the partial volumetric averaging of such regions into the LN areas.
owever, when we contrasted our results using ILL-based blending of

he two sequences against those results generated through different
ata combinations (e.g. 𝐸21 in Section 3.1), our results were superior
𝑝 < 0.05). In this work, we did not possess the segmentation labels
or the LNs, and thus we did not segment the LN to measure their
olumetric extent. Moreover, the true metastatic status of the LNs were
lso unavailable and we could not distinguish benign from metastatic
Ns other than by the standard clinical size criteria. For future work,
e believe that the utilization of segmentation masks for LN detection
ould enable a reduction in the false positives. We also plan to utilize

he trained model to mine additional LNs in the studies where only a
ingle LN was prospectively annotated, but others remain unannotated.
urthermore, once the histopathological confirmation is available, the
N metastatic status can also be correctly predicted.

. Conclusion

We described an automated CAD pipeline to detect the full 3D
xtent of LNs in mpMRI studies. The main goal of this work was to
nable the rapid identification of metastatic and non-metastatic LNs,
uch that they can be sized and assessed for lymphadenopathy. The
AD pipeline was trained on mpMRI studies acquired at our institution
ith a variety of imaging scanners and exam protocols, and the studies

ontained T2FS and diffusion (DWI) sequences. We co-registered the
2FS and DWI series, and applied selective data augmentation to
lend the two series together using an interpolation ratio 𝜆 that was
rawn from a Beta distribution 𝐵𝑒𝑡𝑎(2, 2). ILL improved the diversity
f samples available to the model during the training process. The
esulting volume had traits of both the T2FS and DWI series, such as
at suppression and diffusion restriction. 2.5D images were constructed
rom the blended volume for training a DyHead detector built upon the
TSS framework. Our CAD pipeline generated the full 3D extent for
etected LNs in the volume and executed in 6.2 s per volume. At test
ime, data presented to the trained model could come from either the
2FS series alone, or from the blending of any available T2FS and DWI
eries that were co-registered. In this way, the model did not rely on the
resence of both T2FS and DWI series in the mpMRI study. Our DyHead
etector achieved the best results with a mAP of ∼53.5% and sensitivity
f ∼77.7% at 4 FP/volume. Our results compared against Zhao et al.
2020) and Wang et al. (2022) indicated an improvement in mAP of
10% (43.3% and 40.3%), and sensitivity at 4 FP/vol of ≥12% (65.4%
nd 57.3%) respectively. Contrasting the use of the T2FS series alone
s proposed by Wang et al. (2022) and Mathai et al. (2022b) against
pMRI (T2FS + DWI) used in our work resulted in an increase in

ensitivity at 4FP/volume of ∼20% and ∼4% respectively. Furthermore,
e also established the out-of-distribution robustness of the DyHead
odel by training it on data acquired from one MRI scanner type

nd testing it on data acquired from three other scanners. Our results
ndicated that a DyHead model trained with blended T2FS and DWI
11
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series yielded the best LN detection performance. Our work is an
important first step towards automated detection, segmentation, and
classification of lymph nodes in mpMRI.
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