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A B S T R A C T   

Purpose: We created an infrastructure for no code machine learning (NML) platform for non-programming 
physicians to create NML model. We tested the platform by creating an NML model for classifying radio
graphs for the presence and absence of clavicle fractures. 
Methods: Our IRB-approved retrospective study included 4135 clavicle radiographs from 2039 patients (mean 
age 52 ± 20 years, F:M 1022:1017) from 13 hospitals. Each patient had two-view clavicle radiographs with axial 
and anterior-posterior projections. The positive radiographs had either displaced or non-displaced clavicle 
fractures. We configured the NML platform to automatically retrieve the eligible exams using the series' unique 
identification from the hospital virtual network archive via web access to DICOM Objects. The platform trained a 
model until the validation loss plateaus. Once the testing was complete, the platform provided the receiver 
operating characteristics curve and confusion matrix for estimating sensitivity, specificity, and accuracy. 
Results: The NML platform successfully retrieved 3917 radiographs (3917/4135, 94.7 %) and parsed them for 
creating a ML classifier with 2151 radiographs in the training, 100 radiographs for validation, and 1666 ra
diographs in testing datasets (772 radiographs with clavicle fracture, 894 without clavicle fracture). The network 
identified clavicle fracture with 90 % sensitivity, 87 % specificity, and 88 % accuracy with AUC of 0.95 (con
fidence interval 0.94–0.96). 
Conclusion: A NML platform can help physicians create and test machine learning models from multicenter 
imaging datasets such as the one in our study for classifying radiographs based on the presence of clavicle 
fracture.   

1. Introduction 

The healthcare industry now generates 30 % of the entire global data 
by volume, which is expected to increase exponentially in the coming 
years.1,2 Digital data from radiology contributes to a huge proportion of 
healthcare data. Technological and fundamental advancements in arti
ficial intelligence (AI) applications have helped translate these enor
mous health datasets into practical and actionable health systems. 
Breakthroughs in graphics processing units (GPU), data architecture, 
and deep neural networks enable the creation of numerous AI algo
rithms in healthcare practices, radiology in particular.3 However, the 

process of creating large, labeled training data sets, selecting suitable 
algorithms, choosing appropriate hyperparameter values, as well as 
testing and validating the trained model is a complex and labor- 
intensive process that requires advanced knowledge of computational 
sciences and neural networks as well as inputs from radiologists during 
the training and testing steps.4 The need for human intervention for 
training and/or testing at several stages can limit or slow down AI 
development and/or application. Automation at one or more process 
steps can expedite development and reduce human efforts. 

No code machine learning (NML) technology supports automation 
and efficiency in developing AI models. Unlike traditional machine 

Abbreviations: AI, Artificial intelligence; GPU, Graphics processing units; NML, No code machine learning; VNA, Virtual network archive; UID, Unique identi
fication; JSON, Java Script Object Notation; CSV, Comma-separated value; WADO, Web Access to DICOM Objects. 

* Corresponding author at: Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, USA. 
E-mail address: mkalra@mgh.harvard.edu (M.K. Kalra).  

Contents lists available at ScienceDirect 

Clinical Imaging 

journal homepage: www.elsevier.com/locate/clinimag 

https://doi.org/10.1016/j.clinimag.2024.110207 
Received 27 July 2023; Received in revised form 24 April 2024; Accepted 23 May 2024   

mailto:mkalra@mgh.harvard.edu
www.sciencedirect.com/science/journal/08997071
https://www.elsevier.com/locate/clinimag
https://doi.org/10.1016/j.clinimag.2024.110207
https://doi.org/10.1016/j.clinimag.2024.110207
https://doi.org/10.1016/j.clinimag.2024.110207
http://crossmark.crossref.org/dialog/?doi=10.1016/j.clinimag.2024.110207&domain=pdf


Clinical Imaging 112 (2024) 110207

2

learning programs, NML is a highly calculative, self-reliant process that 
executes actions in an accelerated, efficient, and effective manner for 
generating expected outcomes with minimal human intervention at each 
stage of AI development.5 We created an infrastructure for No code 
machine learning (NML) platform for non-programming physicians to 
create NML models. A fully integrated NML system allows radiologists to 
leverage in-house data to train ML models that can be used for diagnosis, 
worklist prioritization, and automation of time-consuming tasks such as 
the segmentation of anatomical structures. We assessed the performance 
of an NML platform for classifying radiographs based on presence and 
absence of clavicle fractures. 

2. Methods 

Our institution review board (IRB) waived the written consent 
requirement for our retrospective, Health Insurance Portability and 
Accountability Act (HIPAA) compliant study. The study details are 
presented in conformance with the CLAIM checklist.6 

2.1. Study design and data sources 

The study data included clavicle radiographs of 2039 adult patients 
(age >18 years) from 13 hospitals (1 urgent care center, 10 community/ 
cottage, and two quaternary care hospitals). 

To identify the eligible radiographs for our study, we used Nuance 
mPower Clinical Analytics Search (Microsoft Inc.), a cloud-based, 
commercial radiology reports search engine that integrates radiology 
reports data from the sites included in our study. The search key terms 
for identifying consecutive radiology reports and radiographs with and 
without clavicle fractures were “acute fracture” OR “no fracture” OR 
“displaced fracture” AND “clavicle X-ray”. The search was limited to 
clavicle radiographs performed between January 2016 and December 
2022. Both right and left clavicle radiographs were included in the 
study. A post-doctoral radiology research fellow (2 years of experience) 
reviewed all radiology reports and radiographs to exclude clavicle ra
diographs with incomplete anatomic coverage of clavicles, metal-related 
artifact, prosthesis, or evidence of open reduction with internal fixation 
(n = 267). Non-clavicle radiographs (such as shoulder and chest radio
graphs) with or without clavicle fractures were not included in the 
study. Flowchart of the inclusion and exclusion with training and test 

data has been represented in Fig. 1. 

2.2. Ground truth 

We exported radiology reports of the eligible radiographs from the 
radiology report search engine with the following data elements: radi
ology findings text, radiology impression text, date of examination, 
name of the radiographic procedure, site of radiographic acquisition, as 
well as patients' age and gender. We reviewed the radiology reports and 
recorded the details of the presence of fracture to establish the ground 
truth. Since the models were trained on an autonomous learning plat
form, there was no need to perform pixel-level annotations (e.g., 
bounding boxes) at the location of the fractures. 

2.3. Data partitioning 

To avoid selection bias, all consecutive clavicle radiographs were 
included regardless of patients' age, race, and sex as well as radiographic 
equipment and site of acquisition. Although the power analysis was not 
performed to determine the sample size, our sample size was larger than 
most prior publications in this domain.7–17 The radiographs were 
divided at the site level to create distinct training, testing, and validation 
datasets. Clavicle radiographs from three sites were set aside as external 
test datasets. The remaining radiographs were used for training and 
validation of the model. 

2.4. Model 

The automated classifier training system runs on the PyTorch ML 
framework. For inputs, the system takes in a configuration file in Java 
Script Object Notation (JSON) format and a dataset list with labels and 
optional splitting (into training, validation, and test datasets) in the 
comma-separated value (CSV) format. The system pulls the training 
examples listed in the dataset list from the hospital virtual network ar
chives (VNA) using Web Access to DICOM Objects (WADO) and feeds 
them to the training process after applying windowing and leveling, 
normalizing, resizing, and applying data augmentations as specified in 
the configuration JSON. 

We used a pretrained DenseNet201 architecture (20.1 M parame
ters), but the system supports many models which are available from 

Fig. 1. Flowchart of the inclusion and exclusion criteria for the training and test dataset.  
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MONAI, such as EfficientNet models, which use less compute.18–19 The 
user must specify the number of classes and whether they are doing 
exclusive classification, non-exclusive classification, or regression. By 
default both drop-connect (Wan et al., 2013)20 and dropout are used 
with a conservative rate of 0.2 and the following types of data 
augmentation are implemented - random rotations (− 10 to +10 de
grees), random zooms/crops (0.9–1.25×), random flipping, and random 
elastic deformations. The amount of elastic deformation is kept small as 
large deformations may not be suitable for all applications. Several 
options for data normalization are provided (clipping, rescaling, etc.). 
Models are trained using the Adamax optimizer algorithm, (Kingma and 
Ba, 2015) with weighted random sampling to improve performance in 
the case of unbalanced training labels. The default batch size is 6 and the 
default learning rate is set low at 0.0005 to avoid training instabilities. 
We use the well-known “reduce on plateau” learning rate schedule, 
which reduces the learning rate by a factor of 0.5 when the validation 
loss plateaus for 5 steps. A key challenge in no-code ML is determining 
the criteria for stopping training. If the model is trained too long it will 
overfit, whereas if training is stopped too early the model's accuracy may 
not have reached the best possible value. Since the validation loss can be 
very noisy we smooth the validation loss using a moving average of 
width 5 iterations. We stop the training when the smoothed validation 
loss no longer decreases for 1500 iterations. The maximum number of 
epochs is set to 400. The trained model was saved in a designated output 
directory alongside training logs and the configuration in JSON. 

Normalization, learning rate, and early stopping criteria were 
adjustable by modifying the JSON config file. While nearly all options of 
the training system were configurable, we used the abovementioned 
default values across multiple tasks. 

2.5. Preprocessing and training 

A total of 2151 clavicle radiographs were used in the training data
set, and 100 radiographs from the same institutions were automatically 
separated by the model as the validation dataset. All radiographs were 
resampled to a size of 512 × 512 and normalized to have a mean of zero 
and standard deviation of one. 

A key challenge in NML is determining criteria for stopping training. 
If the model is trained too long, it will overfit, whereas if the training is 
stopped too early the accuracy may not have reached the maximum 
value. We smooth the validation loss using a moving average of width 5 
and stop the training when the smoothed validation loss no longer de
creases for 10 steps. We use the well-known “reduce on plateau” 

learning rate schedule, which reduces the learning rate by a factor of 0.5 
when the validation loss plateaus for 5 steps. 

The model was trained using the Adamax optimizer algorithm, with 
weighted random sampling used on the dataset to improve performance 
on unbalanced training datasets. The Adam algorithm uses a first-order 
gradient-based stochastic optimization approach based on adaptive es
timations from first- and second-order moments of the gradient.21 We 
used dropout and the following types of data augmentation - random 
rotation, random zoom, random horizontal flipping, and a small amount 
of elastic deformation. 

2.6. Statistical analysis 

After the model training, testing, and validation, the platform 
generated the statistics for the performance of the AI model. For anal
ysis, we classified the AI output as true positive (both the ground truth 
and AI model agreed on the presence of fracture), true negative (both the 
ground truth and AI agreed on the absence of fracture), false positive (AI 
falsely called a fracture which was not present in the ground truth), and 
false negative (AI did not find the fracture reported in the ground truth). 
The platform also generated the confusion matrix represented in Fig. 2. 

The performance of AI models for the presence and absence of 
fracture was estimated by calculating sensitivity, specificity, accuracy, 
and area under the receiver operating characteristic curve (AUC) with 
95 % confidence intervals (CI). All statistical analyses were performed 
with SPSS (IBM Inc., Version 13). 

3. Results 

3.1. Data 

The mean age (± standard deviation) of 2039 adult patients included 
in our study was 52 ± 20 years. There were 1022 female patients and 
1017 males. Site-wise distribution of patients was Site 1 (n = 621 pa
tients), Site 2 (n = 651), Site 3 (n = 166), Site 4 (n = 40), Site 5 (n = 223), 
Site 6 (n = 167), Site 7 (n = 43), Site 8 (n = 11), Site 9 (n = 6), Site 10 (n 
= 36), Site 11 (n = 37), Site 12 (n = 7), and Site 13 (n = 31). 

Of the 2039 X-rays, there were 1225 radiographs of the right clavicle 
and 814 left clavicle radiographs. Most patients were either outpatients 
(n = 1066) or in the emergency department (n = 828), with only 145 
inpatients. 

Fig. 2. ROC AUC for per X-ray (A) and per patient (B) analysis by the no code machine learning models for identifying clavicle fracture.  
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3.2. Model performance for validation dataset 

A total of 100 radiographs from were automatically split to comprise 
the validation dataset. The performance in this dataset was 80 % 
sensitivity, 98 % specificity, 89 % accuracy, 97.6 % precision and F1 of 
0.87 %. 

3.3. Model performance per X-ray 

To protect data privacy, the model was built on a secure platform 
within the hospital firewall. Radiographs of 108 patients who could not 
be automatically deidentified were excluded. The 1666 radiographs 
used for model testing (772 radiographs with clavicle fracture and 894 
radiographs without clavicle fracture) belonged to two sites that did not 
contribute to the training datasets. 

The model was a simple classifier of clavicle radiographs into those 
with and without fractures. The model had 90 % sensitivity, 87 % 
specificity, 88 % accuracy, and an AUC of 0.95 for detecting clavicle 
fractures. The distribution and example of true positive, true negative, 
false positive, and false negative outputs is summarized in Figs. 2 and 3, 
respectively. There was no significant difference in model performance 
in male or female patients and among patients in different locations at 

the time of their radiography (p > 0.05). On analyzing the performance 
of the AI model in our study, false positive findings were noted in X-rays 
when clavicle had degenerative changes, skin folds, artifacts, and 
foreign bodies such as post catheter overlying the clavicle. False nega
tive findings were present in both displaced and non-displaced clavicle 
fractures. 

3.4. Model performance per patient 

The model performance was evaluated per patient by using the ab
solute value of AI model prediction. The test set included 826 patients 
with 384 in positive group (with fracture) and 442 in the negative group 
(without fracture). The model had sensitivity of 91 %, specificity of 94 
%, accuracy of 93 % with AUC of 0.97 (95 % CI 0.96–0.98) for classi
fying the patients with fracture. 

4. Discussion 

Our study demonstrates that the NML platform can help develop 
simple image features-classifying AI models in a fast and efficient 
manner to achieve the expected outcome. Although the AI development 
process required human involvement in several steps such as in defining 

Fig. 3. Model performance examples on frontal projection radiographs of clavicles with AI-detected (true positive: A, B), AI-missed (false negative: C, D), and AI-false 
positive (E, F) clavicle fractures. 
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the problem of interest and the creation of training datasets, the plat
form required no programming or fine-tuning steps for creating the AI 
model. 

Performance of our NML platform-developed AI model was similar to 
the conventional AI models. For example, Guermazi et al. reported the 
stand-alone performance of their AI model for identifying shoulder and 
clavicle fractures with an 84 % sensitivity, 83 % specificity, and AUC of 
0.90 (95 % CI 0.79–0.96).22 Jones et al. reported on a deep learning 
system, an ensemble of 10 convolutional networks, for identifying 
clavicle fractures with a 90 % sensitivity, 91 % specificity and an AUC of 
0.96.23 Ma et al. reported the model performance with an average pre
cision of 0.90.24 Studies by Lindsey et al. and Reichert et al. have re
ported also reported similar performance for fracture detection with the 
aid of AI models.25,26 Versus some other models, our model does not 
produce heat maps or mark-up the regions of radiographs with clavicle 
fractures. Prior studies have reported on identifying fractures with AI 
models developed with conventional training methods (Table 1) instead 
of the NML platform used in our study.7–17 

The main clinical implication of our study pertains to the use of NML 
platform to simplify the creation of an AI tool for classifying radiographs 
based on the presence of clavicle fractures. A radiology report search 
engine, preferably with a multi-site report database such as the one used 
in our study, can help identify a large volume of eligible cases. Auto- 
retrieval and de-identification of image datasets from the site VNA to 
the NML platform require upfront efforts and infrastructure but can 
expedite the development efforts. For simple classification models, such 
NML-trained models can help improve the diagnostic accuracy of frac
ture detection, especially in clavicle fractures without displacement that 
can challenge the interpreting physician. Third, our study documents 
the feasibility of utilizing NML platform for building AI models, 
particularly those targeting classification of radiographic findings 
without the need for an image level annotation, which is a time- 
consuming and expensive process. Fourth, the NML platform offers 
various data augmentation options for training AI models with limited 
training datasets such as random rotation, random zoom, and random 
elastic deformation. Finally, it is important to understand that the 
classification task on two-dimensional projectional radiography is likely 
a less complex task for NML platforms than lesion detection or charac
terization on radiography or a classification task on cross-sectional im
aging modalities such as CT or MR. 

Our study has limitations. First, there was an asymmetric distribu
tion of radiographs across different institutions and between the radio
graphs with and without clavicle fractures. Second, despite variable 
practice types and radiographic equipment, all clavicle radiographs 
belonged to a common healthcare system in the same geographic loca
tion in the Northeast part of the United States. Third, we did not assess 
variations in the model performance across patients' size, racial, or 
ethnic groups. Fourth, as stated above, the successful creation of a 
classification model for clavicle fractures does not imply that the same 
NML platform will be successful at building sophisticated models or 
those for cross-sectional imaging modalities. Furthermore, model 

performance on different radiography techniques (computerized versus 
digital radiography) was not assessed; however, considering variations 
in equipment across the 14 hospitals, the model was trained and tested 
on radiographs from several different vendors. 

Another limitation of our study pertains to the use of clavicle ra
diographs only. In clinical practice, clavicle fractures are also identified 
on chest radiographs; our model was not trained or tested on chest ra
diographs. With greater anatomic coverage, variable radiographic 
quality, and distracting or overlapping abnormalities on chest radiog
raphy, a separate AI model will likely be necessary to expand clavicle 
fracture detection on chest radiographs. Likewise, due to the exclusion 
of radiographs with incomplete anatomic coverage, artifacts, and prior 
open reduction and internal fixation, we cannot comment on the model 
performance on such radiographs. Another limitation of our study per
tains to the ease of detecting clavicle fractures with the NLM platform. It 
is possible that the platform might not work on other more complex or 
subtle fractures or lesions. Likewise, the results might also not transfer 
with similar NLM performance from 2D radiographs to 3D imaging 
datasets such as from CT and MRI. Finally, we also did not assess the 
model's performance in non-displaced versus displaced fractures and for 
patients with chronic or non-healed clavicle fractures. 

In conclusion, the No code ML platform can help develop AI models 
with sparse data and data labeling, thus simplifying and expediting the 
development of a certain class of AI models such as for fracture classi
fication models. Such No code ML platforms can help data scientists and 
physicians to create and test successful machine learning models from 
multicenter imaging datasets such as the one in our study for classifying 
radiographs based on the presence of clavicle fracture. 
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