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Abstract

Purpose: Use deep learning (DL) to automate the measurement and tracking of kidney stone burden over serial
CT scans.

Materials and Methods: This retrospective study included 259 scans from 113 symptomatic patients being
treated for urolithiasis at a single medical center between 2006 and 2019. These patients underwent a standard
low-dose noncontrast CT scan followed by ultra-low-dose CT scans limited to the level of the kidneys. A DL
model was used to detect, segment, and measure the volume of all stones in both initial and follow-up scans.
The stone burden was characterized by the total volume of all stones in a scan (SV). The absolute and relative
change of SV, (SVA and SVR, respectively) over serial scans were computed. The automated assessments were
compared with manual assessments using concordance correlation coefficient (CCC), and their agreement was
visualized using Bland—Altman and scatter plots.

Results: Two hundred twenty-eight out of 233 scans with stones were identified by the automated pipeline; per-
scan sensitivity was 97.8% (95% confidence interval [CI]: 96.0-99.7). The per-scan positive predictive value
was 96.6% (95% CI. 94.4-98.8). The median SV, SVA, and SVR were 476.5 mm?, —10mm?, and 0.89, re-
spectively. After removing outliers outside the 5th and 95th percentiles, the CCC measuring agreement on SV,
SVA, and SVR were 0.995 (0.992-0.996), 0.980 (0.972-0.986), and 0.915 (0.881-0.939), respectively
Conclusions: The automated DL-based measurements showed good agreement with the manual assessments of
the stone burden and its interval change on serial CT scans.
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Introduction

T HE PREVALENCE OF kidney stones in the United States is
said to be 10.6% in men and 7.1% in women.' Recurrent
stones are also common, exceeding 30% to 40% at 5 years.”
A key component in the management of symptomatic uro-
lithiasis is serial assessment of the patient’s stone burden. The
American Urological Association guidelines suggest using
renal imaging for periodic follow-up and assessment.
Nonenhanced CT can be used to accurately diagnose and
quantify kidney stones.” Although other imaging modalities,

such as kidney, ureter, and bladder radiography, and ultra-
sound are often used due to cost or availability constraints,
they suffer from much lower sensitivity and/or specificity.*°
Furthermore, these modalities also fail to assess stone size
accurately.7’9 Therefore, noncontrast CT is the best modality
for detecting stones and assessing their size.

Despite its accuracy, CT imaging incurs high cost and
carries a radiation risk. To mitigate both cost and radiation
risks, an ultra-low-dose (ULD) limited kidney protocol has
been developed and validated for the follow-up of kidney
stones. '’ Compared to a standard low-dose (SLD) CT, the
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ULD scan reduces radiation dosage significantly (target
~90%) by adjusting tube current range, slice thickness, and
noise index, and costs less due to the limited scan area.

The CT-based follow-up allows the accurate assessment of
stone sizes. However, linear measurements, either in one-
dimensional (axial or coronal plane) or two-dimensional
(reported as length X width), typically used in the clinic may
have substantial interobserver variability and may be sensi-
tive to window/level settings.'' Automated computer-aided
volumetric measurements mitigate this issue and are repro-
ducible.'>'? High interobserver variability (~ 15%—20%)"
can make it difficult to assess changes in stone size over time.
In addition, volumetric measurements are more sensitive to
interval change than linear measurements (for a Ar change in
radius, the change in volume AV r2 X Ar) and can enable
better assessment of stone size change in follow-up.

The total stone burden, defined as the sum of the volumes of
all stones in the kidneys, is a key metric of interest in evaluating
kidney stones and assessing interval change between the initial
and follow-up scans. Indeed, in predicting future symptomatic
stone events, the total volume of all stones in a scan was found
to be the most predictive, more so than other features such as
the largest stone diameter or the number of stones.'*

In this article, we modify and use the deep learning (DL)-
based model proposed and validated in previous work to
assess and track kidney stone burden between initial SLD
scans and subsequent follow-up ULD CT scans.'> While DL
models have been developed and used for various applica-
tions, including detecting or segmenting kidney stones, in-
ferring stone types, or predicting outcomes, to the best of our
knowledge, the current work is the first that evaluates their
usage in assessing stone burden and its interval change in
serial CT scans.'®"?

Materials and Methods
Patient population and CT protocol

This was a retrospective study from a single medical center,
was Health Insurance Portability and Accountability Act-
compliant, and was approved by the Institutional Review Board.
The need for additional signed informed consent was waived.

A summary of the study plan is illustrated in Figure 1. The
cohort comprised 113 patients evaluated for urolithiasis be-
tween 2006 and 2019 and followed up with an ULD CT scan
between 2017 and 2019 (259 total CT scans). Every patient in
the cohort had an initial SLD noncontrast CT scan. The
median follow-up interval was 770 days, (intraquartile range
[IQR]: [294, 1768] days). Fifteen, seven, and one patients had
two, three, and four follow-up scans, respectively. The ULD
follow-up scan coverage was limited to the level of the kid-
neys. Aggressive dose reduction of the ULD series was
achieved by adjusting tube current range and noise index.

All ULD CT scans were performed without intravenous
contrast on a 64-detector-row Discovery CT750 HD scanner
(GE Healthcare) at 120kV with variable tube current mod-
ulation (Smart mA). The mean effective dose was 4.1 mSv
for the ULD compared to 13.4 mSv for the SLD (p <0.01).

CT reconstruction and preprocessing

All images were reconstructed in 2.5 mm slice thickness at
1.25 mm intervals in the transverse (axial) plane. The SLD

Symptomatic kidney stone
patients followed up by ULD
noncontrast CT scans
between 2017 and 2019
n=123 (patients)

Exclusions:
Patients who did not have an
initial SLD scan (n=10)

kidneys and kidney stones

U

Manual review by radiologist and
evaluation of agreement between manual
and automated measurements

[ Run DL model to detect and segment ]

FIG. 1. Outline of the study. DL=deep learning; SLD=
standard low-dose scan; ULD =ultra-low-dose scan.

series was reconstructed using filtered back-projection, and
the ULD series was reconstructed using model-based itera-
tive reconstruction. One axial supine scan that included the
entire kidney was selected from each study and resampled to
1 mm slice spacing.

Kidney stone detector algorithm

The stone detection and segmentation pipeline is a slightly
modified version of the one presented in previous work."
The pipeline segments the kidneys using a three-dimensional

TABLE 1. COHORT CHARACTERISTICS

Characteristics Cohort
Number of subjects (r) 113
Number of scans per 2,(2,2)

patient (median, IQR)
Time interval between
scans (days) (median, IQR)
Number of kidney stones
per scan (median, IQR)
Total stone burden per scan
SV (mm®) (median, IQR)
Volume of individual
stones (mm>) (median, IQR)
Maximum diameter
of individual stones (mm)
(median, IQR)
Sex, n (%)
Male 43 (38.1)
Female 70 (61.9)
Unknown 0

Age at initial scan (years)
(median, IQR)

770, (294, 1727)
2,(2,5)
476.5, (196.5, 2043)
40, (13, 160)°
6, (3.3, 10.2)*

59.5, (48.25, 68)°

“Scans with numerous stones, nephrocalcinosis, or with stones
confluent with adjacent stones were excluded.

Age information was unavailable for four patients.

IQR =intraquartile range.
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(3D) U-Net, and then candidate stones are identified within
the kidney using thresholding at 130 HU, followed by con-
nected components analysis on the thresholded binary mask.
Finally, a convolutional neural network (CNN)-based clas-
sifier then predicts if the “candidate” is a stone.'” In this
work, we trained a new kidney segmenter using the nnU-
Net*® framework (a self-configuring method for deep learn-
ing-based biomedical image segmentation), using several
publicly available datasets which contain segmentations of
the kidney: Beyond the Cranial Vault, Multi—Modalitg Ab-
dominal Multi-Organ Segmentation Challenge 2022,*' the
2021 Kidney and Kidney Tumor Segmentation Challenge,**
and Fast and Low-resource semi-supervised Abdominal
oRgan sEgmentation challenge (FLARE) 2021%* and 2022.
For each dataset, we only used the kidney segmentations
from the labeled examples in the respective training sets to
use as ground truth for training the kidney segmenter.

After training the nnU-Net model, the kidney segmenter
was quantitatively validated on 20 validation cases from the
FLARE 2022 dataset for which the ground truth was avail-
able. Since the stone detection and segmentation pipeline was
primarily trained and used for small stones, it rejected large
stones as false positives using a volume threshold criterion; "
however, we removed the volume threshold to account for the

FIG. 2. Examples of stone detection and
segmentation by the automated pipeline. The
left column shows the original CT (windowed)
while the right column shows the stone seg-
mentations overlaid on the CTs. The yellow
arrows mark the position of the stones Sub-
figures (a) — (c¢) show correctly detected stones
of various sizes, from large (a) to very small
(c). Color images are available online.
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large stones in our cohort. The CNN classifier, being trained
on primarily small stones also tended to reject large stones as
false positives—to mitigate that, the CNN was not used on
stone candidates with volume greater than or equal to
250 mm>. We also impose a minimum stone size criterion
since the high noise in the ULD scans causes single-voxel
false-positive detections.

We reject all stone candidates with volume <3 mm?
(equivalent spherical diameter of 1.8 mm) since smaller
stones are often not considered to be clinically significant,
and it helgs us reduce the false-positive rate in the noisy ULD
scans.>*? The software outputs the volumetric size (mm3),
location (XYZ coordinates, upper/lower pole, left/right kid-
ney), and attenuation (mean, median, standard deviation,
maximum HU, HU) of kidney stones.

Manual screening of the automatically detected stones

A board-certified radiologist (13 years of experience)
manually reviewed the results of the kidney stone detector to
identify false-positive detections and missed stones. Ground
truth segmentations were obtained by correcting the auto-
mated segmentations: missed stones were segmented using
a 130 HU threshold paint brush module, and false-positive

——_ Vol: 3379 mm?

Vol:219 mm?

Nol: 6 mm?
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stone segmentations were removed using 3D Slicer (version
4.10.2) software. The stone burden per scan was assessed
based on the ground truth segmentation, as described in the
following section.

Assessing stone burden

We consider the total volume of all stones (SV) as the
primary measure of stone burden. An individual stone in
the initial scan may remain stable, grow, or disappear in the
follow-up scan, or new stones can appear on the follow-up
scan. For assessing the change in stone burden, we considered
two statistics: the absolute and relative change in total stone
volume. Given a pair of consecutive scans (initial and
follow-up) of the same patient, we computed the (signed)
absolute difference SVA =SVry — SViuia and the relative
change SVR = SVA /SVi; for the manual and the automated
measurements. If SV, was zero, SVR was set to ‘‘unde-
fined’’ and dropped in subsequent statistical analysis.

Evaluating agreement between manual
and automated measurements

First, we evaluate the agreement between the manual and
automated measurements of SV considering every scan in a

cohort as an individual sample. For SVA and SVR, every pair
of consecutive scans from each patient is considered as a
sample. We use Lin’s concordance correlation coefficient
(CCCO) to evaluate the agreement between manual and auto-
mated measurements of SV, SVA, and SVR. We also trim our
data to remove outliers beyond the 5th and 95th percentiles
while calculating the SV, SVA, and SVR, since CCC is sen-
sitive to outliers and non-normality of data due to its reliance
on the squared distance function

We also created Bland—Altman?® and scatter plots to vi-
sualize the agreement between manual and automated mea-
surements for SV, SVA, and SVR.

Statistics

All statistics were done with R version 4.2. For computing
CCC, we used the “DescTools” (version 0.99.46) libraries in
R. The ‘“BlandAltmanLeh” (0.3.1) and “‘ggplot” (version
3.3.6) libraries were used to construct the Bland—Altman plots.

Results

Table 1 summarizes key characteristics of the cohort. The
median number of stones ;)er scan was 2 (IQR: [2, 5]) and the
median SV was 476.5 mm” (IQR: [196.5, 2043] mm3) per scan.

FIG. 3. Examples of stones missed by the
automated pipeline. The left column shows the
original CT (windowed) while the right column
shows the kidney segmentations overlaid on the
CTs. The yellow arrows mark the position of
the missed stones. In (a) and (b), the kidneys
are undersegmented resulting in missed stones.
In (c), the left kidney is missed completely,
possibly due to severe imaging artifacts, re-
sulting in missed stones in the left kidney.
Color images are available online.
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FIG. 4. Examples of false-positive stone de-
tection by the automated pipeline. The left
column shows the original CT (windowed)
while the right column shows the stone seg-
mentations overlaid on the CTs. The yellow
arrows mark the position of the stones. In (a)
and (b), the detections are likely due to calci-
fication in the wall of a cyst and a proximal
ureteral calculus (not truly a false positive),
respectively. In (c), the false positive is caused
due to severe artifacts in the image. Color
images are available online.

The kidney segmenter achieved a mean Dice coefficient of
0.968 (std: 0.030) on the 20 test cases obtained from the
FLARE validation set. Qualitative evaluation also showed
adequate performance even in the presence of large stones,
compared to the previously validated method.

Manual assessment identified 233 (out of 259) scans with
at least one stone, of which 228 were identified by the DL
pipeline (per scan sensitivity 97.8% [95% confidence interval
{CI}: 96.0-99.7]). Two hundred twenty-eight out of 236
scans identified by the DL pipeline had a true stone (positive
predictive value per scan was 96.6% [95% CI. 94.4-98.8]).
Fifty-one out of 233 scans had numerous stones, ne-
phrocalcinosis, or had stones that were confluent with adja-
cent stones, making it difficult to discern individual stones.
Barring these cases, 726/830 stones greater than or equal to
3mm® in volume were detected by the DL with a per-stone
sensitivity of 87.5% (95% CI: 85.2-89.7); the median num-
ber of false positives per scan was 0 (IQR: [0, 1], mean: 0.72).

False-positive stone detections were due to dense renal
calcification (in 23 scans), cyst-related calcification (15),
coarse noise (14), metal artifacts (6), foreign bodies such as
metal or catheter (6), atherosclerotic plaque (4), and adjoin-
ing vertebra, rib, or other extraneous features outside the
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FIG. 5. Total stone burden (SV) trajectories over time for
three selected patients. Patient (a) is male, age 79 years on
the initial scan date, (b) is female, age 46 years on the initial
scan date, and (c) is female, age 79 on the initial scan date.
The SV decreases steadily for (a), fluctuates for (b) and
increases steadily for (c¢). Color images are available online.
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FIG. 6. Agreement between the automated and the manual measurements for (a) SV, (b) SVA, and (¢) SVR. The left
column shows the Bland—Altman plots while the right column shows scatter plots with automated and manual measure-
ments. The upper and lower horizontal lines in the Bland—Altman plots represent the 95% CI. The gray bands in the scatter
plots represent the 95% CI for the best fit regression line (the solid black line). The red dashed line denotes perfect
agreement. Please note that outliers were removed for the scatter plots on the right. CI=confidence interval.

kidney caused by oversegmentation of the kidneys (3).
Figure 2 shows a few examples of stone segmentation, while
Figures 3 and 4 show some examples of missed stones and
false-positive stone detections, respectively.

Figure 5 shows the trajectory of SV over multiple scans for
three selected patients. The median SVA was —10 mm’ (IQR:
[-521, 99]) at an annualized rate of —5.2 mm3/year. The
median SVR was 0.89 (IQR: [0.33, 1.28]) with an annualized
rate of 0.95 (IQR: [0.62, 1.15]). The CCC between the manual
and automated measurements for SV was 0.995 (95% CI.
0.993-0.996). For SVA and SVR, the CCC was 0.980 (0.972—
0.986) and 0.914 (0.881-0.939), respectively. The median
(signed) difference between the manual and the automated
measurement of SV was 0 mm?> (IQR: [-1, 36.75] mm3). For
SVA and SVR, the median differences were 0 mm> (IQR: [-59,
19] mm?®) and 0 (IQR: [-0.04, 0.01), respectively.

Figure 6 shows Bland—Altman and scatter plots showing
the agreement between manual and automated measurements
for SV, SVA, and SVR. The extreme outliers on Figure 6a were
due to mis-segmentation of the kidneys and subsequent false
positive stone detections outside the kidneys. Despite the
presence of a few outliers, Figure 6 shows the strong agree-
ment between the manual and automated measurements for
SV, SVA, and SV.

Discussion

We used fully automated DL software to detect and mea-
sure kidney stones, assess the stone burden and track its
change between initial and follow-up scans. We considered a
cohort of patients who underwent a noncontrast SLD scan
and were followed up by one or more noncontrast ULD scans
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limited to the level of the kidneys, targeted to reduce radia-
tion dose by about 90%. While we focused on the total stone
volume across both kidneys (SV) as the measure of stone
burden in this article, our method can be used to measure and
track stone burden for individual kidneys as well.

Requiring no human intervention, our method can be
cheap and fast. Such automated tracking of stone burden can
be useful for following-up individual patients with kidney
stones, making treatment decisions, and for assessing the
efficacy of stone-related interventions in individuals as well
as large cohorts; stones are often prone to recurring—even
after interventions such as extracorporeal shock-wave litho-
tripsy or percutaneous nephrolithotomy—and follow-up with
ULD scans and the proposed automated assessment method
may improve outcomes in the clinic.'®*>

We found that the agreement of the automated measure-
ments with manual measurements in terms of SV is high. The
disagreement between manual and automated measurements
mainly stemmed from either missed stones or from false-
positive detections. In the presence of large stones or artifacts
in the imaging, the kidney segmenter sometimes under-
segmented the kidneys, resulting in missed stones in the
undersegmented kidney regions (Fig. 3). False-positive de-
tections were typically bright spots in the kidney caused by
dense renal calcifications (which may be considered pre-
stones and not true false positives), cyst-related calcification,
CT imaging artifacts caused by noise, atherosclerotic plaque
in renal vessels, or foreign bodies such as catheter or metal
(Fig. 4).

While detecting, measuring, and tracking kidney stones
can be a tedious task with significant intrareader and inter-
reader variability, the automated method presents a viable
alternative. Normally, the size of a kidney stone is measured
by the maximal transverse diameter. However, this diameter
is a poor indicator of the stone’s volume because stones are
rarely spheres®’ and because the linear measurement varies
between readers'” and window settings,'' especially when
the stones have complex 3D shapes. The automated DL-
based method provides accurate volumetric measurements
(validated in a prior study'”) that can be more informative in
the clinical setting. Further, small size changes over time are
easier to assess with 3D volumetric measurements compared
to linear size measurement. Focusing on the total stone vol-
ume has additional benefits when tracking stone burden
change.

An individual stone in an initial scan can move, grow, split
into two, or be passed, and new stones may form during the
follow-up interval. Thus, tracking individual stones can be
difficult and error-prone. Obtaining corresponding ground
truth may be tedious, time-consuming, and even impossible
to ascertain, except for relatively small cohorts. Furthermore,
tracking individual stones may have limited value in clinical
practice. Besides providing prognostic and clinical value,
focusing on the total stone volume, and using the automated
method allows us to examine large cohorts that would have
been otherwise out of reach.

Some limitations should be noted. The cohort was obtained
from a single institution in the United States, and the ro-
bustness of results to variations in CT acquisition or patient
characteristics across different institutions could not be as-
sessed. We plan to validate our method on external cohorts in
the future. Second, although we used thin slice spacing CT

MUKHERJEE ET AL.

scans (1.25mm), partial volume averaging can affect the
stone volume measurements—we have not considered its
effect here since the ground truth assessments performed by
the radiologist did not consider it either. Third, we have also
not considered stone composition when computing the stone
burden.'® Finally, in computing SVA and SVR, we have as-
sumed that SV measurements on SLD and ULD scans are
directly comparable. While we do not expect any significant
discrepancies between SV measurements made on SLD and
ULD scans, this has not been validated in this study.

In summary, we used fully automated DL software to de-
tect and measure kidney stones and track stone burden over
multiple ULD follow-up scans. The automated measure-
ments of stone burden and its change over follow-up scans
show good agreement with their manual counterparts.
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