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Opportunistic Screening at  
Abdominal CT: Use of Automated 
Body Composition Biomarkers for 
Added Cardiometabolic Value 

Abdominal CT is a frequently performed imaging examination 
for a wide variety of clinical indications. In addition to the imme-
diate reason for scanning, each CT examination contains robust 
additional data on body composition that generally go unused in 
routine clinical practice. There is now growing interest in harness-
ing this additional information. Prime examples of cardiometabolic 
information include measurement of bone mineral density for 
osteoporosis screening, quantification of aortic calcium for assess-
ment of cardiovascular risk, quantification of visceral fat for evalua-
tion of metabolic syndrome, assessment of muscle bulk and density 
for diagnosis of sarcopenia, and quantification of liver fat for assess-
ment of hepatic steatosis. All of these relevant biometric measures 
can now be fully automated through the use of artificial intelligence 
algorithms, which provide rapid and objective assessment and allow 
large-scale population-based screening. Initial investigations into 
these measures of body composition have demonstrated promising 
performance for prediction of future adverse events that matches 
or exceeds the best available clinical prediction models, particularly 
when these CT-based measures are used in combination. In this 
review, the concept of CT-based opportunistic screening is dis-
cussed, and an overview of the various automated biomarkers that 
can be derived from essentially all abdominal CT examinations is 
provided, drawing heavily on the authors’ experience. As radiology 
transitions from a volume-based to a value-based practice, oppor-
tunistic screening represents a promising example of adding value 
to services that are already provided. If the potentially high added 
value of these objective CT-based automated measures is ultimately 
confirmed in subsequent investigations, this opportunistic screening 
approach could be considered for intentional CT-based screening.
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After completing this journal-based SA-CME 
activity, participants will be able to:

	�Discuss the potential benefits of CT-
based opportunistic screening and the 
concerns related to incidental findings at 
imaging.

	�Identify automated CT biomarkers that 
can be derived from abdominal CT ex-
aminations that are performed for other 
clinical indications.

	�Describe how quantification of body 
composition measures at abdominal CT 
can be used for cardiometabolic risk 
stratification in patients.

See rsna.org/learning-center-rg.

SA-CME LEARNING OBJECTIVES

Introduction
Abdominal CT examinations contain robust information on body 
composition that is incidental to the clinical indication for imaging 
and generally goes unused in routine practice. There is growing in-
terest in CT-based opportunistic screening, whereby these additional 
imaging data can be harnessed for assessment of patient risk and 
prediction of future adverse clinical events. These relevant biometric 
measures can now be fully automated through the use of artificial 
intelligence algorithms that provide rapid and objective assessment. 
Given that abdominal CT is used for a wide variety of clinical indi-
cations, a great opportunity exists for cardiometabolic screening that 
is incidental to the clinical question. In this review, we consider the 
clinical effect of abdominal CT in current medical practice and then 
delve into the issue of incidental findings, which has been viewed 
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adult patients continues to climb (2). The ability 
of abdominal CT to allow detection or exclusion 
of relevant abnormalities renders it a high-value 
test. Along with the other cross-sectional imag-
ing modalities, CT ranks as one of the major 
medical advances of the past one-half century. 
To date, most of the clinical benefit of CT has 
been appropriately focused on answering the 
specific clinical question. However, because of its 
comprehensive cross-sectional nature, abdomino-
pelvic CT studies document all structures in the 
prescribed range of imaging, which can lead to 
incidental assessment of other regions.

Incidental Findings at Abdominal CT
The strength of CT, which is its ability to allow a 
broad survey of all abdominal and pelvic contents, 
has also been cited as a weakness. Unsuspected 
CT findings that are outside the purview of the 
clinical indication, which are often referred to as 
incidentalomas, have raised appropriate concern 
from referring providers for unleashing a cascade 
of unintended additional workups. Several radiolo-
gist-led efforts (3,4) have responded to these con-
cerns with guidelines for rational management of 
incidental findings. For example, the often misun-
derstood extracolonic findings at CT colonography 
have been singled out by the Centers for Medicare 
& Medicaid Services as a major reason that this 
screening study remains uncovered for Medicare 
beneficiaries. In reality, unsuspected CT findings 
that are incidental to the reason for imaging have 
always been an issue that radiologists have man-
aged. Through responsible handling that avoids 
defensive “overcalling,” with an understanding of 
the limitations of the technique and reservation of 
additional workup for incidentalomas with a legiti-
mate chance for clinical relevance, the potentially 
negative aspects of incidental findings at CT can 
be effectively contained.

Opportunistic Screening  
at Abdominal CT

In comparison with the negative connotations of 
incidentalomas, a strong case can be made for 
harnessing the rich incidental CT body composi-
tion data embedded in all abdominal examinations 
for clinical benefit. We refer to this approach as 
opportunistic screening, whereby additional CT data 
that otherwise would typically go unused are lever-
aged. This CT-based opportunistic approach was 
initially focused on specific indications, such as ex-
tracolonic findings at CT colonography (5–7), but 
now more broadly applies to nearly any abdominal 
or chest CT examination. 

A host of robust and objective CT-based 
biomarkers that were initially obtained with 
manual and semiautomated approaches such as 

largely as a negative aspect. However, we examine 
the use of incidental CT data for beneficial op-
portunistic screening, with particular attention to 
fully automated measurement based on artificial 
intelligence. Rather than delve into the technical 
details of these automated algorithms, this review                                                                                                
is instead focused more on the potential for clini-
cal implementation of these CT-based measures 
of body composition.

Future directions for additional validation 
research and clinical implementation are ex-
plored. Ultimately, these tools could be used for 
large-scale population-based screening and indi-
vidualized assessment of patient risk. Although 
the current concept focuses on an opportunistic 
approach, whereby the additional information 
is freely gathered with data that apply to the 
clinical indication, the possibility for intentional 
CT-based cardiometabolic screening in the future 
exists if the clear net clinical benefit and cost-
effectiveness can be demonstrated.

Clinical Effect of Abdominal CT
Abdominal CT examinations are frequently 
ordered and performed throughout most of the 
industrialized world because they provide invalu-
able clinical information. In the United States 
alone (1), nearly 100 million body CT examina-
tions are performed each year for a wide variety 
of clinical indications ranging from unexplained 
symptoms or a suspected abnormality to follow-
up or surveillance of known conditions, includ-
ing assessment of response to treatment. Despite 
concerns related to resource use, cost, and radia-
tion exposure, the volume of CT examinations in 

TEACHING POINTS
	� A strong case can be made for harnessing the rich incidental 
CT body composition data embedded in all abdominal ex-
aminations for clinical benefit.

	� Examples of potential cardiometabolic screening opportuni-
ties at abdominal CT include assessment of bone mineral den-
sity for osteoporosis screening, quantification of aortic calcium 
for evaluation of cardiovascular risk, quantification of visceral 
and subcutaneous fat for evaluation of metabolic syndrome, 
assessment of muscle bulk and density for diagnosis of sarco-
penia, and quantification of liver fat for diagnosis of hepatic 
steatosis.

	� Fully automated CT-based bone measures compare favorably 
with the clinical reference standard fracture risk assessment 
tool (FRAX, University of Sheffield) for prediction of future os-
teoporotic fractures.

	� The fully automated CT-based aortic calcification scoring 
algorithm demonstrated better performance than the multi-
variate FRS for both cardiovascular events and overall survival.

	� CT-based measurement of visceral and hepatic fat will ulti-
mately provide a more direct and useful definition of meta-
bolic syndrome.
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enhanced abdominal CT examinations per-
formed in asymptomatic individuals in a screen-
ing cohort (ie, for colorectal cancer screening), 
but these tools and measures can be adapted for 
use in contrast-enhanced CT studies (25–27).

Assessment of Bone Mineral Density
Osteoporosis is a highly prevalent public health 
concern that is associated with a large economic 
burden (28,29). Complicating fragility fractures 
result in substantial morbidity and mortality, 
and up to 30% of patients die within 1 year of 
an osteoporotic hip fracture (30). Unfortunately, 
osteoporosis is also a grossly underdiagnosed and 
undertreated condition, with screening rates that 
continue to lag (31), and additional means of 
detection are needed. Osteoporosis has also been 
underrecognized in men, because approximately 
one-half of all men older than 50 years have low 
bone mineral density (ie, osteopenia or osteo-
porosis), which is similar to the data for women 
(32). All of this represents an ideal situation for 
CT-based opportunistic screening (33). 

Body CT examinations contain rich bone 
mineral density data and are disproportionately 
performed in older adults. CT also offers ad-
vantages over dual x-ray absorptiometry (DXA), 
which is the current clinical reference standard 
but yields false-negative results in most patients 
with osteoporotic fractures (8,34). Given the 
volumetric nature of CT, direct assessment of the 
vertebral trabecular space avoids the overlying 
cortical bone that a planar study such as DXA 
cannot. CT-based assessment of bone mineral 
density can be either an intended examination, 

region-of-interest (ROI) placement for attenua-
tion data (in Hounsfield units) (8–12) can now 
be acquired with fully automated artificial intel-
ligence–based tools. Of course, the reporting of 
radiologic imaging findings that are unrelated or 
incidental to the clinical indication predates CT, 
but this imaging modality is ideally suited for pop-
ulation-based opportunistic screening. Our group 
has developed, trained, tested, and validated vari-
ous CT-based deep-learning and feature-based 
image processing algorithms (13–16). Analogous 
automated body composition tools are also being 
developed by other groups (17). After establishing 
normative population values, including changes 
in measures over time (18–22), we assessed the 
ability of these fully automated algorithms to pre-
dict future adverse events (23,24). In addition to 
further validation in more expanded and diverse 
patient cohorts, the next phase will likely involve 
actual clinical implementation.

Examples of potential cardiometabolic screen-
ing opportunities at abdominal CT include as-
sessment of bone mineral density for osteoporosis 
screening, quantification of aortic calcium for 
evaluation of cardiovascular risk, quantification 
of visceral and subcutaneous fat for evaluation 
of metabolic syndrome, assessment of muscle 
bulk and density for diagnosis of sarcopenia, 
and quantification of liver fat for diagnosis of 
hepatic steatosis (Fig 1). Each of these biometric 
measures is discussed in more detail. Note that 
the predictive performance of these automated 
CT-based tools can be further enhanced by 
combining their complementary value. Our initial 
experience has largely focused on noncontrast-

Figure 1. Automated CT-based cardiometabolic tools for assessment of (second row of images, left to right) bone, 
aortic calcium, visceral to subcutaneous fat ratio, muscle attenuation, and liver attenuation biomarkers from original 
abdominal CT data. In practice, a visual correlate allows for quality assurance for the automated segmentation results 
in individual patients. The specific CT biomarkers shown have all been validated in prior works. (Adapted and reprinted 
under a CC BY license from reference 23.)
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referred to as quantitative CT, or serve as an ad-
ditional study performed for other reasons (ie, 
opportunistic screening).

As with central DXA, assessment of bone 
mineral density at abdominopelvic CT can include 
either the lumbar spine or the hip. Although 
CT can provide DXA-equivalent T-scores of the 
femoral neck (35,36), this approach essentially 
treats CT as a planar examination, along with its 
inherent weaknesses. A quicker, more direct, and 
likely more sensitive approach to opportunistic 
bone mineral density screening simply involves 
placing an ROI in the anterior trabecular space of 
the L1 vertebral body (Fig 2a) (37). We and others 
(8,37–40) have gathered substantial experience 
with this L1 trabecular attenuation measurement, 
including age-related normative values, as shown 
in Figure 2b. Although any vertebral level from 
T12 through L5 could be used, we have focused 
on L1 because it is present on both thoracic and 
abdominal CT images, is easily recognized as the 
first nonrib–bearing vertebra, and is generally less 
angled to the axial (transverse) plane compared 
with L5. ROI placement can be made on either 
the axial or sagittal view (41), but the latter allows 
concurrent evaluation for prevalent compression 
fractures (42). As shown in Figure 2, an ovoid ROI 
measuring 100–200 mm2 is placed in the anterior 
aspect of the L1 trabecular space, subjacent to 
the cortical bone. Unlike formal quantitative CT, 
on-the-fly placement of an ROI does not require 
angling the plane parallel with the disc space yet 
generates similar results (7). As a general rule, 
L1 trabecular attenuation less than 100 HU at 
120 kVp is relatively specific (ie, approximately 
90%) for osteoporosis according to DXA results, 
whereas attenuation less than 150 HU generally 
correlates with low bone mineral density (ie, osteo-
penia or osteoporosis), and is approximately 90% 
sensitive for osteoporosis based on assessment 
with DXA (8,39). However, because planar DXA 
is an imperfect reference standard, CT assessment 
likely allows better stratification of patients at risk 
for fracture (8). More importantly, 90 HU appears 
to be an optimal threshold for determining the risk 
of osteoporotic fracture (43).

Measurement of L1 trabecular attenuation at 
CT can be fully automated (Figs 3, 4) (16,21). 
We have used a feature-based image process-
ing algorithm that begins with automated spine 
segmentation and labeling to identify each ver-
tebral level from T12 to L5. This step is followed 
by isolation of the anterior trabecular space of 
each vertebra, with the use of the L1 vertebra 
whenever possible (Figs 3, 4). The automated 
L1 attenuation value has shown good agree-
ment with data from manual ROI placement 
(21). For older adults, in whom assessment of 

bone mineral density is most valuable, the effect 
of intravenous contrast material enhancement 
appears to be less than that for younger patients, 
for the purposes of opportunistic screening 
(37,44). Nonetheless, a linear correction factor 
for the effect of intravenous contrast material 
on attenuation values may be incorporated (25). 
As with manual assessment of the ROI, auto-
mated measurement of L1 attenuation values is 
valuable for identification of patients at risk for 
future major osteoporotic fractures. In fact, both 
our group (24) and another group (45) have 
recently demonstrated that fully automated CT-
based bone measures compare favorably with 
the clinical reference standard Fracture Risk As-
sessment Tool (FRAX, University of Sheffield) 
for prediction of future osteoporotic fractures 
(Figs 3, 4). In addition, when automated assess-
ment of muscle is included, the diagnostic per-
formance of CT further improves. This perfor-
mance of automated CT is remarkable, because 
the clinical FRAX tool is a somewhat onerous 
online calculator that requires gathering and 
manually inputting multiple clinical variables for 
each patient.

The sagittal view of the spine allows accurate 
identification of vertebral compression fractures, 
most of which are missed on the axial view at 
standard interpretation (42). As is the case with 
trabecular attenuation, detection of fractures 
can also be fully automated with artificial intelli-
gence methods (Fig 5) (45,46). In addition to the 
importance of detection of symptomatic fractures 
and confirmation of complicated osteoporosis, 
the greatest risk factor for a future osteoporotic 
fracture is a prior fracture.

Aortic Calcium Scoring
Cardiovascular disease remains the leading cause 
of death, both in the United States and globally. 
Cardiovascular disease affects more than 90 mil-
lion Americans, and nearly one-half of all adults 
are expected to have some form of heart disease 
by 2030 (47,48). In 2015 alone, heart disease 
and stroke accounted for more than 630 000 
and 140 000 deaths in the United States, respec-
tively (49). Accurate assessment of risk for future 
cardiovascular events helps to guide appropri-
ate patient treatment, including more aggressive 
treatments for those at highest risk and protec-
tion from the costs and complications related 
to unnecessary interventions for those at lower 
risk. In particular, presymptomatic detection of 
increased risk could lead to important preventive 
measures, such as initiation of statin therapy.

Conventional approaches to cardiovascular risk 
assessment such as the Framingham risk score 
(FRS) consist of multivariate measures based on 
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Figure 2. (a) CT-based assessment of bone mineral density with the use of trabecular attenuation at 
the L1 vertebral level. Axial CT images show the L1 vertebral level (top row) in adult patients of a vari-
ety of ages. Magnified axial CT views show the L1 vertebra in soft tissue (second row) and bone (third 
row) windows. Standard manual placement of the ROI for measurement of trabecular attenuation and 
the mean attenuation value in the ROI are shown in the third row. Automated ROI placement was 
programmed to match this location. Sagittal reconstruction images (bottom row, soft-tissue [left] and 
bone [right] windows) show placement of the ROI (yellow oval) at the L1 vertebra. Typically, trabecular 
attenuation values progressively decrease with increasing patient age. The loss of bone mineral density is 
more apparent with the soft-tissue window. (Reprinted, with permission, from reference 39.) (b) Graph 
(left) shows normative reference CT-based L1 trabecular attenuation values based on more than 20 000 
examinations. The mean attenuation values show that age-related L1 trabecular bone loss is fairly linear. 
Error bars indicate standard deviations, which are remarkably uniform throughout the age spectrum. 
Table (right) shows the median and the mean (± standard deviation [SD] ) values for L1 trabecular attenu-
ation for each age group. These normative reference ranges, which are derived from a combination of 
manual and automated measurements, can serve as a quick reference for radiologists when reading body 
CT examinations performed for other clinical indications. Note that these values apply to scanning at 120 
kVp. (Reprinted, with permission, from reference 37.)
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traditional clinical risk factors such as age, sex, 
cholesterol level, and blood pressure results (50). 
However, use of these clinical prediction models 
tends to place large numbers of patients into an 
intermediate risk category, prompting the need 
for additional noninvasive measures (51). Among 

these additional measures is CT-based quantifi-
cation of coronary artery calcification, which is 
an independent predictor of cardiovascular risk 
(52,53). Atherosclerotic calcification of the ab-
dominal aorta also correlates with coronary artery 
disease (54). We found that a single measure of a 

Figure 3. Opportunistic CT measurement of L1 trabecular attenuation in an asymptomatic 76-year-old woman who pre-
sented with abdominal pain due to mild pancreatitis. Axial contrast-enhanced CT image (left) shows the relative placement 
of the automated bone mineral density ROI (green oval) in the anterior trabecular space of the L1 vertebral body. An attenu-
ation value of 100 HU indicates low bone mineral density. Placement of the ROI was intended to match that placed with the 
previously established manual approach. Sagittal CT image (middle) from an examination performed 8 years later for unin-
tended weight loss shows manual placement of the L1 ROI and an attenuation value of 81 HU, which indicates osteoporosis. 
An interval vertebral compression fracture at T11 (arrow) is now seen. Note also the depiction of abdominal aortic calcium 
quantification (red shading) between the L1 and L4 vertebral levels. Frontal radiograph (right) obtained 9 years after the initial 
CT examination shows a left hip fracture (arrow), the risk for which could have been identified at an earlier CT examination.

Figure 4. CT for prediction of an osteoporotic fracture in an asymptomatic 59-year-old woman undergoing colorectal 
cancer screening. Index axial CT images (top row, left and middle) show results from automated assessment of bone with 
the automated placement of the bone mineral density ROI (green oval, top row, left) (63 HU) and muscle (−1.7 HU) attenu-
ation (red shading, top row, middle), which were in the 99th and 98th percentiles, respectively, relative to the entire screen-
ing study cohort. However, the 10-year FRAX scores for this patient were 6.7% for any fracture and 0.5% for hip fracture, 
which are results well below the recommended treatment threshold. Frontal radiograph (top row, right) from 3 months 
later shows that the patient sustained a left femoral neck fracture. Axial noncontrast CT images (bottom row) from multiple 
prior examinations for urolithiasis over the years show, in retrospect, a progressive decrease in L1 bone attenuation at the 
ROI (green oval, automated measures shown). Unfortunately, this information is typically not considered in routine clinical 
practice for CT examinations performed for other indications. (Adapted and reprinted, with permission, from reference 24.)
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noncontrast CT-based abdominal aortic calcifica-
tion score that was acquired with a semiautomated 
method outperformed the FRS for prediction of 
future cardiovascular events in a screening cohort, 
with an average of more than a decade of follow-
up (Fig 6), (12). At a threshold Agatston score of 
200, CT-based quantification of abdominal aortic 
calcification showed a net improvement of 35% 
in the accuracy of classification over that of FRS 
alone for 5-year risk, and it was evenly balanced 
between event and nonevent improvement with 
reclassification. In comparison, adding FRS to the 
CT-based aortic calcification score did not provide 
additional benefits (Fig 6) (12).

To automatically segment and quantify calcified 
atherosclerotic plaque involving the abdominal 
aorta at CT, we applied a deep-learning mask 
R-CNN (region-based convolutional neural net-
works) algorithm (18). Unlike the semiautomated 
method, in which the user selects the coverage to 
include the entire abdominal aorta to the bifur-
cation, the automated algorithm is designed to 
segment and quantify aortic calcium at the L1-L4 
vertebral levels (Fig 7). Nonetheless, good agree-
ment was observed between these semiautomated 
and automated methods. As with the other artifi-
cial intelligence–based algorithms, this automated 
version allows for large-scale population-based 
assessment (Fig 8). Previously, automated evalua-
tion of aortic calcification was only demonstrated 
for noncontrast CT, but a newer method involv-
ing the use of a three-dimensional U-Net has now 

been validated for use with contrast-enhanced CT 
(26). Similar to the predictive ability shown with 
the semiautomated approach, the fully automated 
CT-based aortic calcification scoring algorithm 
demonstrated better performance than that of the 
multivariate FRS for both cardiovascular events 
and overall survival. For example, the highest-risk 
quartile based on automated classification of CT-
based aortic calcification (Agatston score > 492) 
was associated with a hazard ratio for death of 4.5 
relative to the other three quartiles, whereas the 
corresponding hazard ratio for FRS was 2.8 (Fig 
9) (23). Furthermore, the 5-year area under the 
receiver operating characteristic (ROC) curve for 
overall survival was 0.74 for aortic calcification, 
compared with 0.69 for FRS. As seen with fracture 
prediction, combining different automated CT-
based measures can further improve performance 
for prediction of cardiovascular events and death. 
For example, the 2-year area under the ROC 
curve for overall survival increases to 0.81 when 
CT-based aortic calcification, visceral fat, and liver 
fat are combined (Figs 10, 11) (23).

A case can also be made for opportunistic 
quantification of coronary artery calcium identi-
fied at abdominal CT. It has been shown that 
coronary calcium scoring with the use of low-
dose noncontrast chest CT performed without 
electrocardiographic gating correlates well with 
the results of dedicated gated coronary calcium 
scoring protocols (55). Although the entire heart is 
typically not included in abdominal CT protocols, 

Figure 5. Automated detection of a vertebral fracture with two different algorithms in two patients. (a) Composite CT image in a 
62-year-old woman with a severe osteoporotic compression fracture of the L1 vertebral body shows the use of an algorithm for auto-
mated detection and characterization of fractures that involves the use of a height compass approach (red and green lines, left). The 
geometric arrangement of the compass-like layout consists of a central circular sector surrounded by two ring-shaped finite thickness 
concentric bands. The sagittal CT image (left) shows vertebral column segmentation and partitioning. The adjacent image (right) 
shows the stacked-height compass of the entire vertebral column. The circular images show the height compasses for a grade-3 
wedge fracture at L1 (middle) and preserved vertebral height at T12 (top) and L5 (bottom). The patient underwent spine DXA less 
than 2 months earlier that was interpreted as normal (T-score, −0.5). (b) Sagittal CT image in an 85-year-old woman shows a severe 
T11 compression deformity (yellow rectangle), which was detected with a different automated deep-learning algorithm. (Fig 5b 
courtesy of Einav Blumenfeld, Zebra Medical Systems.)
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Figure 6. Quantification of abdominal aor-
tic calcification with a semiautomated CT tool.  
(a) Coronal CT images in two different asymp-
tomatic adults show segmentation of aortic 
calcium (blue shading) with a semiautomated 
software tool originally devised for coronary ar-
tery calcium scoring. Abdominal aortic calcium 
is segmented in an ROI that is specified by the 
user. (b) Superimposed receiver operating char-
acteristic curves for cardiovascular events oc-
curring within a 2-year period after CT show a 
corresponding area under the curve of 0.82 for 
abdominal aortic calcification (AAC) and 0.64 
for the FRS. Adding the FRS to the AAC did not 
improve predictive performance (area under the 
curve, 0.82). (Fig 6b reprinted, with permission, 
from reference 12.)

Figure 7. Change in the automated abdominal aortic calcium level over time in an asymptomatic 60-year-old man undergoing 
noncontrast CT for colonographic screening. Axial image from index CT examination (left) shows moderate hard plaque involving the 
abdominal aorta, which corresponds to an automated Agatston score of 1514. Axial CT images acquired 5 years later (middle and right) 
show an interval increase in hard plaque (red shading, right) that corresponds to an automated Agatston score of 5070. The patient 
experienced a myocardial infarction 4 years after the second CT examination and developed congestive heart failure 3 years after that.

if an Agatston score of the visualized coronary ar-
teries exceeds a relevant threshold, such as greater 
than 100 and greater than 400 for intermediate 
and high risk, respectively, this could add diagnos-

tic value. Automated algorithms with the use of 
deep learning allow detection and quantification 
of the coronary calcium load at nongated CT (Fig 
12) (56,57).
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Quantification of Visceral and 
Subcutaneous Fat

Intra-abdominal or visceral fat is now widely rec-
ognized to be highly relevant to both cardiovascu-
lar risk and metabolic syndrome (58–60). How-
ever, because visceral fat cannot be measured 
with standard clinical (ie, nonimaging) means, 
it is not a defining criterion for central obesity, 
which is poorly assessed with body mass index or 
waist circumference (59). In addition, ectopic fat, 
particularly hepatic steatosis, is also not a defin-
ing element for metabolic syndrome but, similar 
to visceral fat, is also considered to be highly 
relevant. Of course, both visceral and hepatic fat 
can be readily derived from cross-sectional imag-
ing such as CT and MRI and have been corre-
lated with metabolic syndrome (Fig 13) (11).

A variety of semiautomated and fully auto-
mated tools exist for measurement of both sub-

cutaneous and visceral fat at abdominal CT (Fig 
13) (11,17,22,61). Somewhat analogous to the 
apple- versus pear-shaped body habitus, use of 
the CT biomarker of the visceral to subcutaneous 
fat ratio allows a more quantitative assessment of 
these subjective descriptors (Fig 13) (22). As with 
the other automated CT-based tools, population-
based studies can effectively show sex-related 
differences in the distribution of subcutaneous 
and visceral fat (Fig 14). In our healthy outpa-
tient adult screening cohort, the mean visceral to 
subcutaneous fat ratio was 1.8 in men and 0.6 in 
women (22). This automated CT tool can also al-
low objective measurement of changes in abdom-
inal fat over time. We have shown that accounting 
for the specific distribution of abdominal fat (ie, 
visceral vs subcutaneous) provides much more 
valuable information than body mass index alone 
for prediction of future cardiovascular events and 

Figure 8. Bar graph shows au-
tomated population-based assess-
ment of abdominal aortic calcium 
scoring at noncontrast CT and pro-
gressive increases in mean abdomi-
nal aortic calcium scores from a gen-
erally healthy screening population 
of nearly 10 000 adults. Agatston 
scores in women lag by nearly a de-
cade behind those for men. More 
than 30% of all individuals had an 
Agatston score of zero, more than 
50% had a score less than 100, and 
nearly 70% had a score less than 
300, whereas more than 30% had 
a score greater than 300. Of note, 
greater than 90% of this screen-
ing cohort was younger than 70 
years of age, which explains the 
lower frequency of higher Agatston 
scores. (Reprinted, with permission, 
from reference 18.)

Figure 9. Kaplan-Meier time-to-death plots by quartile for, A, automated CT-based aortic calcium scores 
and, B, FRSs in a cohort of asymptomatic adults. Note that the separation for the highest-risk quartile (Q4, 
corresponding to an Agatston score > 492) is greater for automated aortic calcium scoring alone than 
that with the multivariate FRS. This difference is also reflected in the larger hazard ratio for aortic calcifica-
tion than that for the FRS (4.5 vs 2.8). (Adapted and reprinted under a CC BY license from reference 23.)
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Figure 10. Combining automated CT tools for prediction of future adverse events in an asymptomatic 52-year-
old man undergoing CT colonography (CTC) for colorectal cancer screening. A, Coronal (left) and axial (middle 
and right) screening images show calcification (red shading, left), the visceral (blue shading, middle) to subcuta-
neous (red shading, middle) fat ratio, and liver attenuation (green shading). This patient had a body mass index 
of 27.3 and an FRS of 5% (low risk). However, several CT-based metabolic markers were indicative of underlying 
disease (values and percentiles provided). The patient had an acute myocardial infarction 3 years after this initial 
CT examination and died 12 years after the initial CT examination at the age of 64 years. B, Axial (left), coronal 
(middle), and sagittal (right) contrast-enhanced CT images acquired for minor trauma 7 months before death 
were interpreted as negative for abnormalities but show substantial progression of vascular calcification, visceral 
fat, and hepatic steatosis. (Adapted and reprinted under a CC BY license from reference 23.)

Figure 11. Automated body composition tools for metabolic syndrome in an asymptomatic 60-year-old woman. 
Coronal noncontrast (left) and axial (right) CT images show liver attenuation (green shading), aortic calcium (red shad-
ing, left), and abdominal segmentation and quantification of visceral (blue shading, right) and subcutaneous (red shad-
ing, right) fat. In this case, automated mean liver attenuation was 34 HU (95th percentile), which indicates moderate 
to severe steatosis. The automated Agatston score was 2781 (92nd percentile), and the automated L1-level visceral fat 
area was 326 cm2 (95th percentile for women, 91st percentile overall). This patient had a myocardial infarction 3 years 
after the CT examination and died within 1 year after that.
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death (Fig 15). For example, for prediction of 
overall survival, the 5-year area under the ROC 
curve for the automated CT-based visceral to 
subcutaneous fat ratio was 0.66, compared with 
only 0.50 for body mass index (23). CT-based 
fat measures can also be combined with other 
automated biomarkers to enhance predictive per-
formance (Figs 10, 11). On the basis of our initial 
experience, we believe that CT-based measure-
ment of visceral and hepatic fat will ultimately 
provide a more direct and useful definition of 
metabolic syndrome (60). In addition to quantifi-
cation of the amount of visceral fat, some authors 
(62) have suggested that its attenuation may also 
be a relevant measure, although this could be 
due, in part, to its expected inverse relationship 
with the amount of fat.

Assessment of Muscle Bulk  
and Density

Sarcopenia refers to muscle wasting that occurs 
with normal aging, but it can also be accelerated 

by a variety of disease processes. Innumerable 
studies have demonstrated the prognostic value 
of muscle assessment for prediction of outcomes 
before cancer therapy (63) and for other clini-
cal scenarios such as postoperative complications 
and a host of chronic medical conditions (40). We 
have developed a deep-learning algorithm that 
consists of a modified three-dimensional U-Net 
for automatic segmentation and analysis of the 
abdominal wall musculature at CT (13,19). CT is 
a useful tool for assessment of the abdominal wall 
musculature, including both muscle bulk (mea-
sured indirectly as cross-sectional area or volume) 
and muscle density (soft tissue vs fat measured 
indirectly with attenuation values in Hounsfield 
units) (Fig 16) (19). Along with others (17), we 
have selected the L3 vertebral level for standard-
ized evaluation of muscle at CT, because this level 
provides optimal inclusion of the psoas, paraspinal, 
and abdominal wall musculature.

We have found that CT-based muscle attenu-
ation decreases more rapidly with age than does 

Figure 12. Non-gated coronary calcium scor-
ing. Noncontrast CT image obtained without 
gating in a 71-year-old man shows automated 
segmentation of left coronary artery calcification 
(orange shading) with a validated deep-learning 
algorithm. The Agatston score was 611. Although 
most abdominal CT examinations do not include 
imaging the heart in its entirety, even partial cov-
erage showing a calcium score greater than 400 
signifies a high risk for a future adverse event. 
(Case courtesy of Einav Blumenfeld, Zebra Medi-
cal Systems.)

Figure 13. Visceral and subcutaneous fat segmentation and quantification at CT in two asymptomatic obese adults 
with similar body mass index levels but different body habitus. Axial CT image (left), which was acquired with the use 
of the automated fat tool in a 67-year-old man, shows a relative abundance of visceral fat (blue shading) compared 
with subcutaneous fat (red shading), whereas the other axial CT image (right), for which an earlier semiautomated fat 
tool was used at the umbilical level in a 52-year-old woman, shows a relative abundance of subcutaneous fat (orange 
shading) in comparison to visceral fat (light blue shading). These findings show the difference between so-called apple- 
and pear-shaped body habitus, respectively. This difference can be quantified with the visceral to subcutaneous fat 
ratio. The increased visceral to subcutaneous fat ratio for the patient on the left portends a higher cardiovascular risk.
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muscle bulk for both men and women (Fig 16) 
and therefore may be a more sensitive indica-
tor of sarcopenia (19). In our healthy outpatient 
adult screening cohort, mean muscle attenu-
ation at noncontrast CT was 34 HU in men 
and 27 HU in women. We have also found that 
CT-based muscle attenuation translates into a 
more predictive biomarker than muscle bulk 
for future adverse events such as osteoporotic 
fractures, major cardiovascular events, and death 
(23,24). For example, we have shown that auto-
mated muscle attenuation alone outperforms the 
clinical reference standard of the FRAX tool for 
prediction of future hip fractures (Fig 17) (24), 
which are catastrophic complications of osteo-

porosis. In terms of overall survival, the highest-
risk quartile based on muscle attenuation (<22 
HU) was associated with a hazard ratio of 3.6 
relative to the other three quartiles (23). As 
with other attenuation-based automated tools, 
a linear correction can be applied to contrast-
enhanced CT to convert the value to a noncon-
trast equivalent (25).

The predictive value of muscle assessment 
appears to be complementary with other CT-
based automated measurements of body com-
position. In particular, sarcopenic obesity has 
garnered substantial attention as an accelerated 
combined risk factor (64). The complementary 
predictive value of sarcopenic obesity is likely 

Figure 14. Density plots compar-
ing the measurement of subcuta-
neous, visceral, and total adipose 
tissue according to sex. These den-
sity plots are derived from a large 
asymptomatic adult population 
and reflect automated CT-based 
measures at the L1 level. Note 
the relative distribution of subcu-
taneous and visceral fat between 
women and men, with men hav-
ing more visceral fat than women, 
on average. The data on the y axis 
are the relative frequency of adi-
pose tissue in the population stud-
ied. (Reprinted, with permission, 
from reference 22.)

Figure 15. Kaplan-Meier time-to-death plots by quartile for automated CT-based body mass index 
(BMI) (a) and visceral to subcutaneous fat ratio (b) in a cohort of asymptomatic adults. Note how the 
separation among all four quartiles for visceral to subcutaneous fat ratio is substantially better than that 
for BMI, in which there is little difference among quartiles. This difference is also reflected in the larger 
hazard ratio (HR) between the highest-risk quartile (Q4) and the other three quartiles for the visceral to 
subcutaneous fat ratio compared with those for body mass index (2.3 vs 1.4). (Adapted and reprinted 
under a CC BY license from reference 23.)
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further enhanced when visceral fat is specifically 
taken into account. This is readily accomplished 
with the automated CT approach (65).

Quantification of Liver Fat
Nonalcoholic fatty liver disease is a widely preva-
lent condition and a major public health concern. 
Although the liver-specific risks for progression 
from fatty liver disease to nonalcoholic steato-
hepatitis and cirrhosis are legitimate concerns, the 
associated cardiovascular risks greatly outweigh 
them in terms of population health implications 
(Figs 10, 11) (66). Hepatic steatosis, or fatty liver 
disease, when it is not related to alcohol use or 
another identifiable cause (ie, nonalcoholic fatty 
liver disease), is now thought to be a critical com-
ponent of or even a precursor to metabolic syn-
drome, although it is similar to visceral fat in that 
it is not part of the diagnostic criteria (59,60,67). 
We have found that body mass index is a very 
poor predictor of underlying liver fat content in 
individual patients (20). It is also important to 
recognize that liver attenuation at noncontrast 
CT has a linear relationship to the MRI-based 
proton density fat fraction (70–72), which allows 
individualized quantification of liver fat content 
at CT. Put in clinical context for routine practice, 
the noncontrast CT thresholds for mild steatosis 
(proton density fat fraction ≥ 5%) and moder-
ate steatosis (proton density fat fraction ≥ 15%) 

correspond to 57 HU and 40 HU, respectively 
(27). Previously, we studied hepatic steatosis at 
noncontrast CT by manually placing a single ROI 
in a representative area of the right hepatic lobe 
in each patient (9,10,73,74). Remarkably, a fully 
automated assessment of volumetric liver attenua-
tion with the use of a deep-learning algorithm that 
consists of a modified three-dimensional U-Net 
is in close agreement with results of this manual 
ROI approach, with a mean difference of less than 
3 HU (Fig 18) (20). This automated approach 
allows objective assessment of changes in liver 
fat content over time (Fig 19). Hepatic steatosis 
appears to represent an important complementary 
risk factor for prediction of future cardiovascu-
lar events (Figs 10, 11), presumably through the 
metabolic syndrome pathway (23). Unlike the 
other automated body composition tools to assess 
muscle, bone, calcium, and abdominal fat, simple 
conversion from contrast-enhanced CT to a 
noncontrast equivalent is not possible for liver fat 
content (27). Instead, only categorical assessment 
of contrast-enhanced CT (eg, moderate steatosis) 
is feasible.

Figure 16. Automated muscle segmentation at 
abdominal CT. (a) Axial CT image at the L3 level 
in a 50-year-old man shows the automatically seg-
mented muscle (red shading). (b) Graph of au-
tomated CT-based muscle area and attenuation 
differences according to subject age shows that 
muscle attenuation (red line) decreases at a greater 
rate with aging compared with the cross-sectional 
area (blue line). (c) Graph shows that this trend ex-
ists for both men and women. After age 70, both 
muscle attenuation and area values plateau more in 
women than in men. (Reprinted, with permission, 
from reference 19.)
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Quantifying liver fat at contrast-enhanced 
CT is more problematic. At portal venous phase 
imaging, comparison of the liver with the spleen 
allows gross categorization of steatosis (75), but 
not precise quantification. Deriving virtual non-
contrast liver images from dual-energy CT would 
allow such quantification, assuming that attenu-
ation values match closely with true noncontrast 
images.

Other Potential CT-based Biomarkers
A variety of additional CT-based measures could 
also serve as useful biomarkers, whether they 
are fully automated or not. Examples include 
CT-based radiomics and texture analysis, organ-
based volumetry, and computer-aided strategies 
for detection and diagnosis (76–79). Some of 
these automated solutions such as computer-
aided detection of colorectal polyps have been 
around for decades but can now be aimed at 
newer targets.

For nonalcoholic fatty liver disease and the 
related progression of liver disease, the relevant 
prognostic feature is neither steatosis nor nonal-
coholic steatohepatitis, but rather the presence 

of hepatic fibrosis (80,81). We have investigated 
several CT-based biomarkers for prediction of the 
degree of hepatic fibrosis, not only for nonal-
coholic fatty liver disease, but also for hepati-
tis C and other causes of chronic liver disease 
(77,82–86). Specific measures have included liver 
surface nodularity (Fig 20), hepatosplenic volu-
metry, and texture analysis. Work is being done 
to automate fully some of these measures, which 
would help to facilitate opportunistic detection 
of unsuspected hepatic fibrosis. To date, we have 
developed a robust tool for automatically deriv-
ing liver and spleen volumes at CT. Although we 
have found that automated assessment of hepatic 
and splenic volume matches closely with semiau-
tomated results, effective volumetric analysis of 
the liver for fibrosis requires Couinaud segmenta-
tion to derive the liver segmental volume ratio, 
which currently requires at least some manual 
interaction (77,86). Nonetheless, routine use of 
robust tools for automated derivation of total 
liver and spleen volume might one day supplant 
the current suboptimal approach that employs 
linear measurement for improved assessment of 
hepatomegaly and splenomegaly (Fig 21).

Figure 17. Sarcopenia for prediction of future hip fractures. ROC curves (top) for prediction of hip fractures 
over a 2-year period show that automated CT-based measurement of muscle attenuation in Hounsfield units 
(HU) alone (top left, AUC = 0.75) surpasses the multivariate FRAX score (top right, AUC = 0.73). When bone 
and muscle attenuation are combined (not shown), the performance is further improved (AUC = 0.76). Axial 
CT image (lower left) shows automated L3-level muscle segmentation in a 54-year-old asymptomatic woman. 
Mean muscle attenuation was −1.2 HU (98th percentile). Axial CT image (lower right) shows aortic calcium (red 
shading) with an automated Agatston score of 4283 (96th percentile). The patient had a myocardial infarction 
3 months later, had a left hip fracture 1 year after that, and died 3 years later at age 58. (ROC curves reprinted, 
with permission, from reference 24.)
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Future Directions
The ultimate goal for these automated CT bio-
markers is to leverage them for actual clinical im-
plementation, which would allow prospective risk 
profiling in practice. Ideally, a dashboard readout 
with an automated structured report would be 
available at the time of initial interpretation by 
the radiologist. Given the rapid pace of artificial 
intelligence–based innovations in medical imag-
ing, this could become a reality in the not-too-
distant future. However, many challenges and 
hurdles remain. Additional validation in larger 
and more diverse cohorts is still required, which 
could be accelerated with a federated model. 
Regulatory approval, competing systems, work-
flow logistics, reimbursement models, potential 

medical-legal issues, and even ethical consider-
ations about opportunistic reporting must all be 
considered. In particular, the value proposition 
must be demonstrated convincingly, not only for 
the individual patient or imaging department but 
also for the entire system. Robust cost-effective-
ness analyses that compare opportunistic screen-
ing with the clinical status quo (eg, DXA for 
osteoporosis screening) are needed. Of course, 
the former is essentially free information that was 
incidental to the indication for CT imaging. 

The use of imaging data that are otherwise 
discarded for the benefit of patients is an easy 
position to defend. However, if it can be shown 
that combining multiple CT-based parameters 
provides a clear net clinical (and economic) 

Figure 18. Automated versus manual liver fat quantification at noncontrast CT. (a) CT images at the same 
level show manual (left) and automated (right) methods for measuring liver attenuation (yellow circle, left; 
green shading, right) in an asymptomatic 60-year-old man with severe steatosis. (b) Scatterplot shows that the 
results of the manual ROI technique agree well with those of the automated volumetric approach. (Adapted and 
reprinted, with permission, from reference 20.)
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Figure 19. Changes in liver fat content over time. Axial noncontrast CT images acquired over a decade in an asymptomatic man 
who was 51 years of age at the time of initial imaging show substantial variation in liver attenuation in the ROI (yellow circle) cor-
responding to a liver fat fraction change of greater than 20%. Note the excellent agreement between the automated and manual 
measures of liver attenuation. Also note how little body mass index (BMI) has changed over time. (Reprinted, with permission, from 
reference 20.)

Figure 20. Semiautomated 
measurement of the liver sur-
face nodularity score for detec-
tion of hepatic fibrosis and cir-
rhosis. Axial contrast-enhanced 
CT image (top left) of the liver 
in a patient with a hepatitis C 
virus infection who had not 
previously been evaluated with 
biopsy or noninvasive methods 
for liver fibrosis shows a cir-
rhotic liver with a nodular sur-
face and trace ascites. The blue 
box shows the area that is mag-
nified (magnification, 2.5) 
and appears in the upper right 
image, which shows how the 
liver is manually painted with 
the green brush stroke. Axial 
contrast-enhanced CT image 
(bottom left) shows automatic 
detection of the liver. The yel-
low box indicates the area that 
is magnified in the correspond-
ing bottom right image. (Mag-
nification, 30.) The green line 
represents the automatically 
detected liver surface, and the red line is a smoothed polynomial line (spline) fit to represent a smooth liver surface. The distances 
between the detected edge and spline are measured on a pixel-by-pixel basis, with approximately 100 measurements per section 
(bottom right) and 1000 measurements for the recommended 10 sections (not shown). The liver surface nodularity score in this case 
was 4.8, which is considered severe cirrhosis. (Case courtesy of Andrew D. Smith, MD.)

benefit, perhaps we can revisit the concept of 
intended or organized CT-based population 
screening. Of course, any such attempt must 
include consideration of the lessons learned 
from the previous whole-body CT screening fi-
asco, which lacked an evidence-based approach. 
The value of such a CT-based cardiometabolic 
screening strategy could also be further en-
hanced with simultaneous screening for colorec-
tal cancer or possibly even lung cancer.

Conclusion
By leveraging the rich body composition data con-
tained in all abdominal CT examinations with the 
power of artificial intelligence–based techniques, 
these automated measures offer the potential 
for presymptomatic detection of conditions that 
manifest with the greatest risk for future adverse 
events, such as osteoporotic fractures, major 
cardiovascular events, and death. The use of these 
automated biomarkers can match or exceed the 
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best available clinical prediction tools, which are 
somewhat onerous and often not obtained in clini-
cal practice. When they are applied opportunisti-
cally during abdominal CT for other indications, 
these automated measures add value, especially for 
unscreened individuals. The potential value of this 
approach is further amplified by the large numbers 
of CT examinations that are performed for a wide 
variety of clinical indications.
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