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Hepatomegaly is defined as abnormal enlargement of the 
liver that can result from a wide variety of inflamma-

tory, infiltrative, neoplastic, and other conditions. Detect-
ing a correlation between hepatomegaly and clinical and 
laboratory findings as well as between acute and subacute 
or chronic clinical course is essential. Imaging diagnosis 
of hepatomegaly is generally based on subjective assess-
ment using cross-sectional modalities such as US or CT 
supplemented by various linear craniocaudal (CC) mea-
surements. However, unidimensional (linear) assessment 
is a suboptimal method that does not completely reflect 
the complex morphology of this three-dimensional (3D) 
organ. As such, CC measurements may overestimate the 
size of the liver, as with the normal variant of a Riedel lobe 
configuration, or underestimate its size, as in the case of 

relative left lobe and caudate hypertrophy. Ultimately, it is 
reasonable that the best determinant of liver size is the liver 
volume. Previously, estimating the liver volume on the ba-
sis of cross-sectional imaging was a labor-intensive process. 
With use of deep learning algorithms, liver segmentation 
and volume assessment can now be accomplished in a fully 
automated manner, potentially rendering this approach 
both more efficient and likely more accurate than manual 
linear assessment.

Previous CT studies aimed to establish thresholds for 
normal liver volume in healthy adults but generally in-
cluded small cohort sizes and/or used approaches that are 
manual or only partially automated (1–12). Other stud-
ies attempted to measure liver volume using fully auto-
mated CT-based techniques (13–15), with varying success. 

Background: Imaging assessment for hepatomegaly is not well defined and currently uses suboptimal, unidimensional measures. 
Liver volume provides a more direct measure for organ enlargement.

Purpose: To determine organ volume and to establish thresholds for hepatomegaly with use of a validated deep learning artificial 
intelligence tool that automatically segments the liver.

Materials and Methods: In this retrospective study, liver volumes were successfully derived with use of a deep learning tool for asymp-
tomatic outpatient adults who underwent multidetector CT for colorectal cancer screening (unenhanced) or renal donor evaluation 
(contrast-enhanced) at a single medical center between April 2004 and December 2016. The performance of the craniocaudal and 
maximal three-dimensional (3D) linear measures was assessed. The manual liver volume results were compared with the automated 
results in a subset of renal donors in which the entire liver was included at both precontrast and postcontrast CT. Unenhanced liver 
volumes were standardized to a postcontrast equivalent, reflecting a correction of 3.6%. Linear regression analysis was performed to 
assess the major patient-specific determinant or determinants of liver volume among age, sex, height, weight, and body surface area.

Results: A total of 3065 patients (mean age 6 standard deviation, 54 years 6 12; 1639 women) underwent multidetector CT for 
colorectal screening (n = 1960) or renal donor evaluation (n = 1105). The mean standardized automated liver volume 6 standard 
deviation was 1533 mL 6 375 and demonstrated a normal distribution. Patient weight was the major determinant of liver volume 
and demonstrated a linear relationship. From this result, a linear weight-based upper limit of normal hepatomegaly threshold vol-
ume was derived: hepatomegaly (mL) = 14.0 3 (weight [kg]) 1 979. A craniocaudal threshold of 19 cm was 71% sensitive (49 
of 69 patients) and 86% specific (887 of 1030 patients) for hepatomegaly, and a maximal 3D linear threshold of 24 cm was 78% 
sensitive (54 of 69) and 66% specific (678 of 1030). In the subset of 189 patients, the median difference in hepatic volume between 
the deep learning tool and the semiautomated or manual method was 2.3% (38 mL).

Conclusion: A simple weight-based threshold for hepatomegaly derived by using a fully automated CT-based liver volume segmenta-
tion based on deep learning provided an objective and more accurate assessment of liver size than linear measures.
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CT Protocol
All CT studies were performed with eight- to 64-section mul-
tidetector–row scanners (GE Healthcare). The CT acquisition 
technique used has been previously described in detail (17,18). 
Briefly, for the study patients undergoing CTC, we used unen-
hanced supine CT performed with 120 kVp and modulated 
tube current (typically between 30 mA and 300 mA) to achieve 
a noise index of 50. For the renal donor group, we used the 
postcontrast parenchymal phase abdominal CT series, typically 
consisting of 120 kVp and modulated tube current (between 30 
mA and 300 mA), with a noise index of 17–28, both based on 
patient size. The intravenous contrast agent was iohexol (Om-
nipaque, GE Healthcare). We also obtained a precontrast series 
for the renal donor protocol but typically did not include the 
entire liver. However, a subset of renal donor cases for which 
whole-liver pre- and postcontrast series were available was used 
to derive the small correction to convert unenhanced CTC liver 
volumes to a postcontrast equivalent (see following section). Be-
fore automated liver segmentation, we retrospectively reformat-
ted all CT series to 3-mm-thick sections at 3-mm intervals.

Automated Liver Segmentation and Volume Assessment
The detailed description of the automated deep learning segmen-
tation method for organ segmentation can be found elsewhere 
and includes a modified 3D U-Net and CycleGAN (19–21). The 
relevant code has been posted to https://github.com/rsummers11/
CADLab/tree/master/CT%20Liver%20Segmentation%20
Software. The deep learning algorithms used in this study have 
been previously developed, trained, and tested at the National 
Institutes of Health. No additional training, validation, or ma-
chine learning was required for this study, which precludes the 
need to repeat separate training and testing. This deep learning 
tool differs from an older tool that used traditional, manually 
designed image processing methods (5).

To enable processing of large 3D volumes with limited 
graphics processing unit memory, an initial strided convolu-
tion (step size 2) and a complementing final transposed convo-
lution were added. Training data were obtained from the Medi-
cal Segmentation Decathlon project (22). Data augmentation 
was performed using 3D rotation, crop, elastic deformation, 
CycleGAN noncontrast image, and random flips. Model train-
ing and inference were performed on the National Institutes of 
Health Biowulf System high-performance computing cluster 
using four central processing unit threads and up to 48 graph-
ics processing unit nodes (NVIDIA K80 or P100; graphics 
processing unit memory, 12 or 16 GB, respectively). The batch 
size was four, resolution was 256 3 256 3 192, and initial 
filters were 32. The initial learning rate was 0.0001, and train-
ing was performed for 10 000 iterations. All voxels designated 
as liver by the segmentation algorithm were analyzed, and the 
liver volume was computed. A mean Dice score of 0.887 6 
0.006 (standard deviation) was found in a prior validation re-
port (21). To ensure the liver was completely included within 
the scanned range, at least one section without segmented liver 
was included, both superior and inferior to the segmented liver. 
To allow for quality assurance in individual scans, the tool pro-
vides a mask series that can be fused with the original imaging 

However, the purpose of these studies was to compare auto-
mated measurements with manual measurements, rather than 
characterize the liver size in large healthy populations.

The main purpose of our study was to establish the normal 
distribution of liver volumes in healthy adults using a fully au-
tomated CT-based artificial intelligence quantitative visualiza-
tion tool and to suggest potential thresholds for hepatomegaly, 
considering patient-specific factors. We also assessed the perfor-
mance of linear CT measurements for identifying cases of hepa-
tomegaly according to these volume thresholds.

Materials and Methods

Study Patients
This investigation complied with the rules of the Health In-
surance Portability and Accountability Act and was approved 
by the institutional review board at the University of Wiscon-
sin and the Office of Human Subjects Research Protection at 
UW Health. The requirement for signed informed consent was 
waived for this retrospective assessment. The initial study cohort 
comprised consecutive generally healthy asymptomatic adult 
outpatients undergoing either unenhanced abdominal CT for 
colorectal cancer screening (CT colonography [CTC]) or post-
contrast abdominal CT for potential renal (kidney) donation at 
a single medical center between April 2004 and December 2016. 
Patients who did not have the entire liver scanned at CT were 
excluded. Patients with missing data were excluded. Only one 
CT study was included per patient.

Basic demographic and clinical information (age, sex, weight, 
and height) was collected from the electronic health record. 
Body surface area (BSA) was calculated using the Mosteller 
method (16):

Abbreviations
3D = three-dimensional, BSA = body surface area, CC = craniocaudal, 
CTC = CT colonography

Summary
Fully automated CT-based liver volume segmentation based on deep 
learning methods provided an objective and more accurate assessment 
of liver size than linear measures.

Key Results
 n In a retrospective analysis of 3065 patients who underwent mul-

tidetector CT for colorectal screening (n = 1960, unenhanced) 
or renal donor evaluation (n = 1105, contrast-enhanced), patient 
weight was the major determinant of liver volume, allowing a 
weight-based upper limit of normal threshold for hepatomegaly: 
mL = 14.0 3 (weight [kg]) 1 979.

 n Liver volumes measured using automated deep learning and man-
ual methods were in close agreement, with a median difference of 
less than 3%.

 n Linear estimates of liver size were inaccurate for determining the 
amount of liver tissue, as shown by the automated liver volume.
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Figure 1: Example output from the automated tool in 
a 48-year-old woman weighing 89.6 kg. (A) Coronal 
postcontrast CT and (B) maximum-intensity projection 
images show fused automated liver segmentation. As 
seen in (C) the original postcontrast CT image, the liver 
has a somewhat vertical orientation but does not ap-
pear enlarged. The automated liver volume was 2142 
mL, which is below the weight-based hepatomegaly 
threshold of 2231 mL for this patient. However, the 
automated linear craniocaudal measurement was 
elongated at 22.5 cm. This discordant liver shape has 
been referred to as a Riedel lobe configuration and is a 
normal variant.

Figure 2: Example output from the automated tool in a 
59-year-old woman weighing 85.3 kg. (A) Axial (trans-
verse), (B) coronal, and (C) maximum-intensity projection 
postcontrast CT images show fused automated liver segmen-
tation. As seen in (D) the original axial (transverse) and (E) 
coronal postcontrast CT images, the liver has a somewhat 
bulbous configuration, suggesting morphologic enlargement. 
The automated liver volume was 2573 mL, which is well 
above the weight-based hepatomegaly threshold of 2173 
mL for this patient. However, the automated linear craniocau-
dal measurement was only 17.4 cm, thereby appearing to 
underestimate the liver size in this discordant case.

series for visual inspection of the segmented liver section by 
section (Figs 1, 2). In general, intrahepatic vessels and focal 
hepatic lesions are included in the automated liver segmenta-
tion, which allows for similar handling regardless of whether 
intravenous contrast material was administered.

Additionally, the linear distance between the most cephalad 
and caudal sections containing segmented liver were used to au-
tomatically derive the true CC liver length. This automated true 
CC measurement is theoretically a better representation of liver 
size than typical CC values derived in practice, which represent 
the longest linear measurement 
contained on a single coronal 
section and may be angled in 
some. The automated tool also 
derives the longest linear di-
mension of the liver in 3D space 
(maximal 3D length in any 
plane), which would be difficult 
to obtain manually in practice.

Although this deep learning 
tool has been previously trained 
and tested, we sought further 
parallel validation by comparing 
the results with those of another 
validated semiautomated CT 
software tool (CT Liver Analy-
sis, Philips IntelliSpace Portal) 
that requires manual correction 
by the user before final liver seg-
mentation and volume deter-
mination (11,23). After initial 
automated segmentation of the 
entire liver by the software, the 
margins are then verified and 
easily manipulated if needed by 

using adjustable digital brush and eraser tools to add or subtract 
tissue volume, respectively. We compared the volume between 
this semiautomated software tool and the fully automated deep 
learning tool in a subset of postcontrast CT studies from the 
renal donor group.

Statistical Analysis
Summary statistics for demographic and clinical data were com-
piled. Stepwise multiple linear regressions were used to assess the 
relationships between demographic and clinical data and liver 
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volumetric data. Simple least-squares linear regression was per-
formed to show the mean trend between the dominant predic-
tive clinical factor or factors from the initial multiple regressions 
and liver volume. Given these results, an upper limit of normal 
line was created, defined by adding two times the standard devia-
tion of the residuals of the constant (y-intercept) to the final lin-
ear regression. Outliers with liver volumes above the upper limit 
of normal line were classified as having hepatomegaly for the 
remainder of the analysis. Contingency tables were constructed 
to assess the performance of the automatically acquired CC and 
maximal 3D linear measurements as predictors of hepatomegaly 
against the volumetric definition provided earlier. All statistics 
were calculated on IBM SPSS Statistics 26 software. P , .05 was 
used for determining statistically significant difference.

To evaluate intrapatient changes in liver volume after intra-
venous contrast material administration, we used a subset of re-
nal donor scans in which the entire liver was included on both 
precontrast and postcontrast series. We performed linear least-
squares regression analysis to compare pre- and postcontrast 
volume results (Appendix E1 [online]). This minor correction 
(3.6%) was then applied to the scans from the group that un-
derwent unenhanced CTC, resulting in postcontrast-equivalent 
volumes that allowed the two subsets to be combined for all sub-
sequent analyses.

Results

Patient Characteristics
Among the 10 473 total asymptomatic adult outpatients under-
going either unenhanced abdominal CT for colorectal cancer 
screening (n = 9223) or postcontrast abdominal CT for potential 
renal donation (n = 1250), 7406 patients were excluded for CT 
scans that did not contain the entire liver (n = 7261 from CTC 
group and n = 145 from renal donor group), and two patients 
from the CTC group were excluded due to missing demographic 
or clinical information (Fig E1 [online]). The final sample con-
sisted of 3065 asymptomatic adults (mean age 6 standard de-
viation, 54 years 6 12; 1426 men, 1639 women). The average 
patient height 6 standard deviation was 1.71 m 6 0.10, and the 

average patient weight was 79.4 kg 6 17.7 (Table 1). The deep 
learning tool was successful in segmenting the liver in all scans. 
The average standardized liver volume 6 standard deviation was 
1533 mL 6 375 and demonstrated a normal distribution (Fig 
3). The median processing time for liver segmentation per study  
was 55 seconds (interquartile range, 46–81 seconds).

Linear Regression Comparisons of Patient Characteristics with 
Liver Volume
The initial linear regression models included BSA, but because 
weight was found to be a more powerful predictor of liver volume 
than BSA (r2 = 0.44 and 0.36, respectively), BSA was removed 
from subsequent stepwise regression, as its value is directly de-
rived from height and weight, which are already represented 
in the model. Table 2 shows the results of the final model in 
the stepwise multiple linear regression comparing patient age, 
sex, height, and weight with standardized liver volume. Weight, 
height, and age showed an independent association with liver 
volume (coefficients of 0.62, 20.27, and 0.05, respectively), 
whereas sex was not independently associated with a difference 
in liver volume (P = .46). Weight was the clear dominant predic-
tor of liver volume, as seen with the scale of the standardized b 
coefficient in the model.

Figure 4 shows that the standardized liver volumes demon-
strated a linear relationship with patient weight—which was the 
dominant predictive factor—with the least-squares linear regres-
sion, resulting in the following formula:

The threshold for hepatomegaly was set at two standard de-
viations above the mean for the final modeled equation:

Table 1: Patient Demographics

Parameter Value
Sex*
 Male 1426
 Female 1639
Age (y)
 Mean 6 standard deviation    54 6 12 
 Median and interquartile range 55 (50–62)
 Range 18–95
Weight (kg) 79.4 6 17.7
Height (m) 1.71 6 0.10
Body surface area (m2)   1.9 6 0.3

Note.—The study included 3065 patients. Unless otherwise 
specified, data are means 6 standard deviations.
* Data are numbers of patients.

Figure 3: Density plot of automated liver volumes shows the relatively normal 
distribution for this generally healthy adult sample. Results for noncontrast scans have 
been normalized and combined with postcontrast scans. Density is a unitless mea-
sure, representing fraction of cases, where the total area under the curve sums to 1. 
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This weight-dependent threshold for liver enlargement is dis-
played as a solid line in Figure 4.

The CC and maximal 3D linear measurements exhibited only 
moderate performance for identifying cases of volume-derived 
hepatomegaly, with many cases of under- or overestimation. A 
CC cutoff of 19 cm for detecting an enlarged liver (by volume 
definition) yielded a sensitivity of 71% (49 of 69 patients [95% 
CI: 60, 82]), specificity of 86% (887 of 1030 patients [95% CI: 
84, 88]), positive predictive value of 26% (49 of 192 patients 
[95% CI: 19, 32]), and negative predictive value of 98% (887 
of 907 patients [95% CI: 97, 99]). A maximal 3D line cutoff of 
24 cm for detecting an enlarged liver yielded a sensitivity of 78% 
(54 of 69 patients [95% CI: 69, 88]), specificity of 66% (678 of 
1030 patients [95% CI: 63, 69]), positive predictive value of 13% 
(54 of 406 patients [95% CI: 10, 17]), and negative predictive 
value of 98% (678 of 693 patients [95% CI: 97, 99]). Figure 1  
shows an example in which a normal, more vertically oriented 
liver measurement was enlarged according to typical linear CC 
criteria but was within normal volume limits for the patient’s 
weight. Similarly, Figure 2 depicts an enlarged liver based on our 
derived volume threshold, whereas the linear CC measurement 
did not indicate enlargement.

For the subset of 189 patients (mean age, 46 years 6 12; 77 
men, 112 women) for whom we also obtained liver volume as-
sessment with use of the semiautomated or manual software tool, 
the correlation between the liver volume and the deep learning 
tool was excellent (r2 = 0.98; P , .01). The median difference 
in liver volume between the deep learning tool and the semi-
automated or manual method was 2.3% (interquartile range, 
0.7%–3.7%) (38 mL [interquartile range, 12–68 mL]). Figure 
5 shows the overlap of volume distribution with each method.

Discussion
The deep learning CT tool used in this study segmented the 
liver for every patient evaluated, including both unenhanced 
and enhanced series. Our adult 
outpatient sample was gener-
ally healthy and asymptomatic 
and underwent CT imaging 
for either colorectal cancer 
screening or potential renal 
donation. The average liver 
volume  6 standard deviation 
measured was 1533 mL 6 375,  
which correlated with patient 
weight (P , .001). In general, 
our results of liver volume as-
sessment match well with those 
of smaller (n = 11–351) prior 
healthy study samples in in-
vestigations that used a variety 
of manual and semiautomated 
methods in terms of average 
values: 1493 mL (3), 1323 mL 
(8), 1510 mL (4), 1580 mL (7), 
1419 mL (1), 1520 mL (9), 
1510 mL (5), and 1671 mL 

(11). To establish the normal value, we decided to start with 
asymptomatic outpatients, but our threshold for hepatomegaly 
will need to be tested in symptomatic patients with known liver 
diseases expected to result in hepatomegaly. From the data ob-
tained in regression analyses, we found that weight, rather than 
body surface area (BSA), was the major predictor of liver vol-
ume, and that sex was not an independent predictor. We also 
found that liver volume increased linearly with weight, which 
simplified the output. Furthermore, to establish the upper limit 
of normal, we found that elevated outliers beyond two standard 
deviations from the mean also increased linearly with weight. 
Thus, we decided that a simple linear threshold based on weight 
represents a good balance for characterizing true outliers (hepa-
tomegaly). Previous research has used BSA (5), which requires 
additional computation and may not have the same linear rela-
tionships we found using patient weight.

Hepatomegaly is a challenging clinical and imaging diagno-
sis, partly because of the lack of an accepted in vivo radiologic 
definition. Evaluation is further complicated by acute, subacute, 
and chronic clinical presentations. Relevant acute causes include 
inflammation or hepatitis, which may be due to steatohepatitis 
from alcoholic-related liver disease and nonalcoholic fatty liver 
disease—or its more accurate name, metabolic dysfunction–
associated fatty liver disease (24)—as well as viral, drug-induced, 
vascular, and autoimmune causes. More subacute and chronic 

Table 2: Multivariable Linear Regression Analysis for 
Predicting Liver Volume

Variable Standardized b Coefficient P Value
Weight 0.62 ,.001
Age 20.27 ,.001
Height 0.05 .002
Sex Excluded .46

Figure 4: Graph shows automated CT-based liver volume according to patient weight (Wt). Weight was the dominant 
patient factor affecting liver volume. The solid red line represents the derived weight-based threshold for hepatomegaly 
based on two standard deviations above the mean (dashed line).
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causes include neoplastic disease (metastatic or primary tumor) 
as well as several metabolic, infiltrative, and congenital condi-
tions. The correlation with liver enzymes can help distinguish 
hepatocellular from cholestatic causes, but these are generally 
nonspecific and often require additional clinical correlation and 
testing. Regardless of the cause, linear measurements at US, CT, 
or MRI provide only a crude assessment of liver size, reflected 
by the wide array of suggested measurements and thresholds, 
whereas volume estimation provides for the most logical and ac-
curate assessment of the amount of liver tissue. Owing to tech-
nical limitations, volume assessment in cross-sectional imaging 
is largely limited to the research realm. However, with artificial 
intelligence deep learning approaches, organ volume assessment 
is now a feasible routine measurement that can be applied to 
other abdominal organs, such as the spleen.

Beyond the objective assessment of liver size by means of 
determination of volume, both CT and MRI can provide 
noninvasive assessment of liver fat content and liver fibrosis. 
Attenuation values obtained using unenhanced CT have a lin-
ear relationship with MRI-based proton density fat fraction 
(25,26), which is the current clinical standard. Automated 
mean whole-liver attenuation can be combined with vol-
ume assessment with use of artificial intelligence approaches 
(27,28). MRI elastography is a well-established tool to estimate 
liver fibrosis (29). However, several objective CT-based mea-
surements can also be used to accurately predict the presence 
and degree of liver fibrosis, including liver surface nodularity, 
segmental volume changes, and parenchymal textural analysis 
(23,30–32). However, decreased total liver volume is actually 
a poor predictor of the liver fibrosis stage, primarily because of 
compensatory changes of Couinaud segments I–III relative to 
segments IV–VIII. This segmental redistribution, however, can 
be captured by the liver segmental volume ratio (11,23). We 
are currently working on a deep learning prototype for assess-
ing segmental liver volume changes. In terms of hepatomegaly, 

our derived volume threshold now needs to be tested in mixed 
symptomatic cohorts to assess its utility.

Among the patients who underwent renal donor evaluation 
and had both pre- and postcontrast studies that included the en-
tire liver, the postcontrast liver volume estimations were slightly 
but systematically larger than those in the precontrast equiva-
lents, which could be described with a simple linear correlation. 
This minor (3.6%) discrepancy might be attributed in part to an 
actual physiologic increase as well as “pseudo-enlargement” re-
lated to the contrast enhancement effect that slightly expands the 
edges of liver segmentation. Because most abdominal CT scans 
are contrast enhanced, we decided to standardize all unenhanced 
volumes to contrast-enhanced equivalents.

We acknowledge some limitations to our study. First, based 
on our findings that patient weight was the major determinant, 
we chose to define hepatomegaly in terms of otherwise healthy 
outliers that were two standard deviations above the mean for 
a specific patient weight. This simplistic approach avoided the 
need for complex multivariate thresholding or nomograms, po-
tentially allowing for easier clinical use if validated in symptom-
atic cohorts. Other researchers have used different approaches, 
including one– and 2.5–standard deviation thresholds using 
BSA-normalized livers (5). In future validation studies that in-
clude diseased populations, other volume thresholds may be 
explored. Additionally, more diverse populations from other 
centers and regions can be included for more generalizable re-
sults. Second, the lack of another reference standard definition of 
hepatomegaly beyond volume estimation may make further vali-
dation somewhat challenging. As we have demonstrated, linear 
measurements, such as CC assessment, cannot accurately predict 
liver size (ie, volume).

In summary, using a deep learning tool to measure liver vol-
ume, we derived a simple weight-based threshold for hepato-
megaly that holds several advantages over the standard linear 
assessment used in routine clinical practice. Further validation 
of our simplified hepatomegaly approach is required, especially 
in terms of its application to more diverse symptomatic cohorts 
with diseased livers. Future studies on a deep learning proto-
type could provide additional value in assessing segmental liver 
volume changes. If this current approach is further validated in 
larger healthy and patient cohorts, then it could provide for an 
easier and more objective measurement of liver size with value in 
screening for patients with an abdominal CT scan or for diag-
nostic purposes.

Acknowledgment: We thank Oliver F. Hunt, MD, for his work in collecting semi-
automated liver volumes for subanalysis comparison with automated volume tools.

Author contributions: Guarantor of integrity of entire study, A.A.P.; study concepts/
study design or data acquisition or data analysis/interpretation, all authors; manu-
script drafting or manuscript revision for important intellectual content, all authors; 
approval of final version of submitted manuscript, all authors; agrees to ensure any 
questions related to the work are appropriately resolved, all authors; literature research, 
A.A.P., V.N.K., M.G.L., P.M.G., P.J.P.; clinical studies, A.A.P., V.N.K., M.G.L., P.J.P.; 
statistical analysis, A.A.P., V.N.K., P.M.G.; and manuscript editing, A.A.P., M.G.L., 
P.M.G., J.W.G., D.C.E., P.J.P.

Disclosures of Conflicts of Interest: A.A.P. No relevant relationships. V.N.K. No 
relevant relationships. M.G.L. Prior grant funding from Philips and Ethicon; hono-
rarium for a lecture from the International Society for Computed Tomography. 

Figure 5: The density plot of the subanalysis comparing automated (Auto) 
liver volume (orange) and manual or semiautomated (Semi) liver volume (green) 
show good overlap in the distributions. The median volume difference was less 
than 3%. 



Perez et al

Radiology: Volume 000: Number 0—Month 2021  n  radiology.rsna.org 7

P.M.G. No relevant relationships. J.W.G. No relevant relationships. D.C.E. No 
relevant relationships. R.M.S. Cooperative Research and Development Agreement 
from PingAn; royalties or licenses for patents, software, or both from PingAn, iCAD, 
Philips, ScanMed, and Translation Holdings; graphics processing unit card donations 
from NVIDIA. P.J.P. Consulting fees from Zebra Medical Systems, GE Healthcare, 
and Bracco.

References
 1. Andersen V, Sonne J, Sletting S, Prip A. The volume of the liver in pa-

tients correlates to body weight and alcohol consumption. Alcohol Alcohol 
2000;35(5):531–532.

 2. Feng LM, Wang PQ, Yu H, et al. New formula for predicting standard liver 
volume in Chinese adults. World J Gastroenterol 2017;23(27):4968–4977.

 3. Henderson JM, Heymsfield SB, Horowitz J, Kutner MH. Measurement 
of liver and spleen volume by computed tomography. Assessment of repro-
ducibility and changes found following a selective distal splenorenal shunt. 
Radiology 1981;141(2):525–527.

 4. Kwo PY, Ramchandani VA, O’Connor S, et al. Gender differences in alco-
hol metabolism: relationship to liver volume and effect of adjusting for body 
mass. Gastroenterology 1998;115(6):1552–1557.

 5. Linguraru MG, Sandberg JK, Jones EC, Petrick N, Summers RM. Assess-
ing hepatomegaly: automated volumetric analysis of the liver. Acad Radiol 
2012;19(5):588–598.

 6. Poovathumkadavil A, Leung KF, Al Ghamdi HM, Othman IeH, Meshikhes 
AW. Standard formula for liver volume in Middle Eastern Arabic adults. 
Transplant Proc 2010;42(9):3600–3605.

 7. Sandrasegaran K, Kwo PW, DiGirolamo D, Stockberger SM Jr, Cummings 
OW, Kopecky KK. Measurement of liver volume using spiral CT and the 
curved line and cubic spline algorithms: reproducibility and interobserver 
variation. Abdom Imaging 1999;24(1):61–65.

 8. Stapakis J, Stamm E, Townsend R, Thickman D. Liver volume assessment 
by conventional vs. helical CT. Abdom Imaging 1995;20(3):209–210.

 9. Suzuki K, Epstein ML, Kohlbrenner R, et al. Quantitative radiology: au-
tomated CT liver volumetry compared with interactive volumetry and 
manual volumetry. AJR Am J Roentgenol 2011;197(4):W706–W712.

 10. Um EH, Hwang S, Song GW, et al. Calculation of standard liver volume in 
Korean adults with analysis of confounding variables. Korean J Hepatobili-
ary Pancreat Surg 2015;19(4):133–138.

 11. Furusato Hunt OM, Lubner MG, Ziemlewicz TJ, Muñoz Del Rio A, 
Pickhardt PJ. The liver segmental volume ratio for noninvasive detection 
of cirrhosis: comparison with established linear and volumetric measures. J 
Comput Assist Tomogr 2016;40(3):478–484.

 12. Heymsfield SB, Fulenwider T, Nordlinger B, Barlow R, Sones P, Kutner 
M. Accurate measurement of liver, kidney, and spleen volume and mass by 
computerized axial tomography. Ann Intern Med 1979;90(2):185–187.

 13. Cai W, He B, Fan Y, Fang C, Jia F. Comparison of liver volumetry on 
contrast-enhanced CT images: one semiautomatic and two automatic ap-
proaches. J Appl Clin Med Phys 2016;17(6):118–127.

 14. Nakayama Y, Li Q, Katsuragawa S, et  al. Automated hepatic volum-
etry for living related liver transplantation at multisection CT. Radiology 
2006;240(3):743–748.

 15. Wang K, Mamidipalli A, Retson T, et al. Automated CT and MRI liver seg-
mentation and biometry using a generalized convolutional neural network. 
Radiol Artif Intell 2019;1(2):180022.

 16. Mosteller RD. Simplified calculation of body-surface area. N Engl J Med 
1987;317(17):1098.

 17. Pickhardt PJ, Graffy PM, Zea R, et al. Automated abdominal CT imaging 
biomarkers for opportunistic prediction of future major osteoporotic frac-
tures in asymptomatic adults. Radiology 2020;297(1):64–72.

 18. Perez AA, Pickhardt PJ, Elton DC, Sandfort V, Summers RM. Fully auto-
mated CT imaging biomarkers of bone, muscle, and fat: correcting for the 
effect of intravenous contrast. Abdom Radiol (NY) 2021;46(3):1229–1235.

 19. Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. Medical 
Image Computing and Computer-Assisted Intervention 3D U-Net: Learn-
ing Dense Volumetric Segmentation from Sparse Annotation. MICCAI 
2016. Cham, Switzerland: Springer, 2016; 424–432.

 20. Kayalibay B, Jensen G, van der Smagt P. CNN-based segmentation of 
medical imaging data. arXiv preprint arXiv:1701.03056. https://arxiv.org/
abs/1701.03056. Posted January 11, 2017. Accessed February 25, 2021.

 21. Sandfort V, Yan K, Pickhardt PJ, Summers RM. Data augmentation using 
generative adversarial networks (CycleGAN) to improve generalizability in 
CT segmentation tasks. Sci Rep 2019;9(1):16884.

 22. Medical Segmentation Decathlon. Generalisable 3D Semantic Segmen-
tation. https://arxiv.org/abs/2106.05735. Accessed February 25, 2021.

 23. Pickhardt PJ, Malecki K, Hunt OF, et  al. Hepatosplenic volu-
metric assessment at MDCT for staging liver fibrosis. Eur Radiol 
2017;27(7):3060–3068.

 24. Fouad Y, Waked I, Bollipo S, Gomaa A, Ajlouni Y, Attia D. What’s in a name? 
Renaming ‘NAFLD’ to ‘MAFLD’. Liver Int 2020;40(6):1254–1261.

 25. Guo Z, Blake GM, Li K, et al. Liver fat content measurement with quanti-
tative CT validated against MRI proton density fat fraction: a prospective 
study of 400 healthy volunteers. Radiology 2020;294(1):89–97.

 26. Pickhardt PJ, Graffy PM, Reeder SB, Hernando D, Li K. Quantifica-
tion of liver fat content with unenhanced MDCT: phantom and clinical 
correlation with MRI proton density fat fraction. AJR Am J Roentgenol 
2018;211(3):W151–W157.

 27. Graffy PM, Sandfort V, Summers RM, Pickhardt PJ. Automated liver fat 
quantification at nonenhanced abdominal CT for population-based steato-
sis assessment. Radiology 2019;293(2):334–342.

 28. Pickhardt PJ, Blake GM, Graffy PM, et al. Liver steatosis categorization on 
contrast-enhanced CT using a fully automated deep learning volumetric 
segmentation tool: evaluation in 1204 healthy adults using unenhanced CT 
as a reference standard. AJR Am J Roentgenol 2021;217(2):359–367.

 29. Tang A, Cloutier G, Szeverenyi NM, Sirlin CB. Ultrasound elastogra-
phy and MR elastography for assessing liver fibrosis: part 2, diagnostic 
performance, confounders, and future directions. AJR Am J Roentgenol 
2015;205(1):33–40.

 30. Lubner MG, Jones D, Kloke J, Said A, Pickhardt PJ. CT texture analysis of 
the liver for assessing hepatic fibrosis in patients with hepatitis C virus. Br J 
Radiol 2019;92(1093):20180153.

 31. Pickhardt PJ, Graffy PM, Said A, et al. Multiparametric CT for noninvasive 
staging of hepatitis C virus–related liver fibrosis: correlation with the histo-
pathologic fibrosis score. AJR Am J Roentgenol 2019;212(3):547–553.

 32. Roberts AS, Shetty AS, Mellnick VM, Pickhardt PJ, Bhalla S, Menias CO. 
Extramedullary haematopoiesis: radiological imaging features. Clin Radiol 
2016;71(9):807–814.


