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Abstract. Current deep learning based segmentation models general-
ize poorly to different domains due to the lack of sufficient labelled
image data. An important example in radiology is generalizing from
contrast enhanced CT to non-contrast CT. In real-world clinical applica-
tions, cross-domain image analysis tools are in high demand since med-
ical images from different domains are generally used to achieve precise
diagnoses. For example, contrast enhanced CT at different phases are
used to enhance certain pathologies or internal organs. Many existing
cross-domain image-to-image translation models show impressive results
on large organ segmentation by successfully preserving large structures
across domains. However, such models lack the ability to preserve fine
structures during the translation process, which is significant for many
clinical applications, such as segmenting small calcified plaques in the
aorta and pelvic arteries. In order to preserve fine structures during
medical image translation, we propose a patch-based model using shared
latent variables from a Gaussian mixture. We compare our image trans-
lation framework to several state-of-the-art methods on cross-domain
image translation and show our model does a better job preserving fine
structures. The superior performance of our model is verified by perform-
ing two tasks with the translated images - detection and segmentation
of aortic plaques and pancreas segmentation. We expect the utility of
our framework will extend to other problems beyond segmentation due
to the improved quality of the generated images and enhanced ability to
preserve small structures.

1 Introduction

Developing deep learning based segmentation models which can generalize to dif-
ferent domains has been in high demand since different type of medical images
are usually collected in real clinical practice to achieve a precisely diagnosis. For
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Fig. 1. (a) Real post-contrast CT scan. (b) Synthetic non-contrast CT using Cycle-
GAN [21]. (c) using shared latent variables from a Gaussian distribution [4,8]. (d)
Gaussian mixture model.

example, a patient might have a non-contrast and a contrast-enhanced CT scan
generated by injecting an intravenous contrast agent to highlight different inter-
nal structures at different time points. For instance, the arteries are enhanced
in early the early phase and the kidneys are enhanced in the late phase as the
contrast agent is metabolized in the kidneys.

Although many existing works [5,13–17] have used image-to-image transla-
tion techniques to assist in medical image analysis tasks, less work been done to
address cross-domain image segmentation due to the lack of sufficient labelled
data from different domains. Only a few studies have used synthetic images
generated by cross-modality image-to-image translation (e. g., CT and MRI) for
cross-domain image (e. g., organ) segmentation [20,22]. However, image segmen-
tation across CT and MRI scans is of less clinical importance due to its poor
performance caused by the large difference between the two modalities. More-
over, CT scans are typically used to scan a large range (fast but low resolution)
while MRI scans are often targeted at small regions (slow but high resolution).
Paired CT and MRI scans for the same region of the body are rarely collected
in clinical practice. Such works usually focus on large organ (e. g., heart) seg-
mentation. However, hardly any work has been done for the small structure
segmentation across domains, for example calcified plaque segmentation in the
aorta and pelvic arteries under different contrast levels. This is a clinically impor-
tant problem, since calcified plaque in the arteries is a strong predictor of heart
attack [9].

Applying existing image translation models to improve calcified plaque seg-
mentation on different domains is impractical since these model show incon-
sistent performance for preserving fine/tiny structures after image translation
(as shown in Fig. 1, the calcified plaques are blurry and covered by neighboring
structures by CycleGAN [21] and UNIT [4,8]). We hypothesize this is because
UNIT assumes a shared latent Gaussian variable across domains and real medical
images actually lie in a shared Gaussian mixture model since different internal
structures (image patches) lies in different local clusters as shown on the right
side of Fig. 1.

In order to address these problems, we proposed a patch-based domain
invariant method using shared latent variables from a Gaussian mixture model
for image translation [7,23]. In order to quantitatively evaluate the image
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translation performance of our model, we applied it to calcified plaque detec-
tion/segmentation and pancreas segmentation on both non-contrast and contrast
enhanced CT images. We compared our model to several image translation net-
works. Experimental results showed that our model performs much better than
the baseline (without image translation) and competing methods (e. g., Cycle-
GAN [21] and UNIT [8]) by improving the performance of both tasks. It is worth
noting that our model is trained using unpaired images across different domains,
which means it can be easily adapted to real-world clinical practice where paired
images are relatively rare.

2 Method

2.1 Unsupervised Image-to-Image Translation Networks (UNIT)

Let x1 ∈ X1 and x2 ∈ X2 be two images from non-contrast and contrast enhanced
CT, respectively. The image size of x1, x2 is 512×512 in our dataset. Liu et al. [8]
proposed two sets of variational auto-encoders for the two different domains and
translate the images across the two domains via a shared latent space Z. The
shared latent space Z is conditionally independent from the two domains and
is enforced to follow a Gaussian distribution with unit variance. Intuitively, this
latent space Z encodes the underlying morphological structure of objects and
is domain invariant. For example, the latent space Z may depend on the shape
of internal organs which is invariant across image domains. They implemented
this by sharing the latent space Z layers of two variational autoencoders. The
UNIT model [8] trained using the whole image, which results in loss of detailed
structures as shown in Fig. 1(b). Similarly, the CycleGAN method also translates
imags between domains using a shared latent space and cycle consistent loss but
can not preserve the detailed structures (see Fig. 1(c)).

2.2 Patch-Based Mixtures Gaussian Image-to-Image Translation

We proposed a patch based method and extracted many small randomly sam-
pled patches from each image. The optimal patch size is determined using testing
with the validation set. We used a patch size of 32 × 32 in all our experiments.
We extracted random patches at the same location from x1, x2 respectively. We
extracted the image features using a pre-trained CNN on these small patches
and found that they lie in different local clusters as shown in Fig. 2. Intuitively,
image patches from different organs or internal structures will be clustered into
different local clusters. Based on these observations, we proposed to model the
domain independent shared latent space Z using a mixture Gaussian model,
μz = [μz,1, · · · , μz,k],Σz = [Σ1,z, · · · ,Σz,K] are the mean and variance for dif-
ferent Gaussian components.

z ∼
K∑

k=1

πkN (z|μk,z,Σk,z), s.t.
K∑

k=1

πk = 1, (1)
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Fig. 2. The framework of our proposed model compared to UNIT [8] model. Our model
assumes that the shared latent variable lies in a Gaussian mixed distribution (different
patches lies in different local clusters and Liu et. al. [8] assume a single Gaussian
distribution.

K is the number of Gaussian components following [2]. It is worth not-
ing that K is determined by the validation dataset on the downstream seg-
mentation/detection task. We follow [8] and use 6 sub-networks: two domain
image encoders: E1, E2, two domain image generators G1, G2, and two domain
adversarial discriminators D1,D2 as shown in Fig. 2. We use VGG-16 as the
encoder and a reversed VGG-16 structure as the decoder. We use the vari-
ational inference model from Edward [18] to solve the parameters in our
model. The encoder outputs a set of mean vectors for each Gaussian compo-
nent: E1(x1, θ1), E2(x2, θ2), Σ1 = [Σ1,1, · · · ,Σ1,K],Σ2 = [Σ2,1, · · · ,Σ2,K] are
the variance matrix for each Gaussian component. Θ1 = [θ1,1, · · · , θ1,K],
Θ2 = [θ2,1, . . . , θ2,K] are the weights for using a shared encoder to output the
mean for different Gaussian components. The distribution of latent code z given
x1, x2 are listed as,

q1(z|x1) ∼
K∑

i=1

πkN (z|E1(x1, θ1,k),Σk,1)) ,
K∑

k=1

πk = 1,

q2(z|x2) ∼
K∑

i=1

πkN (z|E2(x2, θ2,k),Σk,2)) ,
K∑

k=1

πk = 1.

The reconstructed image x̂1−>1
1 = G1(z ∼ q1(z|x1)) for two variational

autoenconder (VAE) (E1, G1) and (E2, G2) are x̂2−>2
2 = G2(z ∼ q2(z|x2)), we

have the VAE loss:
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LV AE1(E1, G1,Θ1,Σ1,Σz, μz) = λ1KL(q1(z|x1)||p(z)) (2)
−λ2Ez∼q1(z|x1)[log pG1(x1|z)]
LV AE2(E2, G2,Θ2,Σ2,Σz, μz) = λ1KL(q2(z|x2)||p(z)) (3)
−λ2Ez∼q2(z|x2)[log pG1(x2|z)],

where λ1, λ2 are the parameters controls the weights for the objective terms and
the KL divergence terms penalized derivation of the distribution if the latent
variable from the prior distribution.

Our model also has two generative adversarial networks: GAN1 = {G1,D1},
GAN2 = {G2,D2}. D1,D2 are constrained to output true if images are sampled
from the first or second domain respectively and output false if the images are
generated from G1, G2 respectively. We have the following conditional GAN
objective functions, which constrain the translated images to resemble images in
their respective target domains:

LGAN1(E2, G1,D1,Θ1,Σ1,Σz, μz) = λ0Ex1∼PX1
[log D1(x1)] (4)

+λ0Ez∼q2(z|x2)[log D1(G1(z))]
LGAN2(E1, G2,D2,Θ2,Σ2,Σz, μz) = λ0Ex2∼PX2

[log D2(x2)] (5)
+λ0Ez∼q1(z|x1)[log D2(G2(z))],

Similarily to the previous equation, the hyperparameter λ0 balances the impact
of the GAN objective function. We also incorporate a cycle consistency con-
straint to ensure that twice translated images resemble the original image and a
KL divergence term which penalizes the latent code from deviating too far from
the prior distribution.

LCC2(E1, G1, E2, G2,Θ1,Θ2,Σ1,Σ2,Σz, μz) (6)
= λ3KL(q1(z|x1)||p(z))
+λ4KL(q2(z|x1−>2

1 )||p(z)) − λ4Ez∼q2(z|x1−>2
1 )[log pG1(x1|z)]

LCC2(E2, G2, E1, G1,Θ1,Θ2,Σ1,Σ2,Σz, μz)
= λ3KL(q2(z|x2)||p(z)) (7)
+λ4KL(q1(z|x2−>1

2 )||p(z)) − λ4Ez∼q1(z|x2−>1
2 )[log pG2(x2|z)]

Combining all the above objective functions, our final objective functions is:

arg min(E1, E2, G1, G2,Θ1,Θ2,Σ1,Σ2,Σz, μz)max(D1,D2) (8)
LV AE1(E1, G1,Θ1,Σ1,Σz, μz) + LV AE2(E2, G2,Θ1,Σ1,Σz, μz)
+LCC1(E1, G1, E2, G2,Θ1,Σ1,Θ2,Σ2,Σz, μz)
+LCC2(E1, G1, E2, G2,Θ1,Σ1,Θ2,Σ2,Σz, μz)
+LGAN1(E1, G1,D1,Θ1,Σ1) + LGAN2(E2, G2,D2,Θ2,Σ2)
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3 Experiments

Evaluation Tasks. In order to evaluate the image translation model quanti-
tatively, we evaluated the performance of our image translation models on two
challenging image segmentation tasks: calcified plaque detection/segmentation
and pancreas segmentation on both the non-contrast and contrast enhanced CT
scans given labelled CT scans only from one domain. We also compared our
model to two recent state-of-the art image translation models: CycleGAN [21]
and UNIT [4,8], which have been broadly applied to image translation on natural
images.

Image Translation Training. For training we used 140 unpaired CT scans
(70 non-contrast, 70 contrast enhanced) taken from renal donor patients at
the University of Wisconsin Medical Center. We applied our image translation
model to generate synthetic contrast enhanced CT scans from the labelled non-
contrast CT scans and used them as augmented data to improve our plaque
segmentation/detection performance and pancreas segmentation on both con-
trast enhanced and non-contrast CT scans.

The image translation training dataset was separated into 10 folds and one
fold was used as validation data for selecting hyperparameters including the
number of Gaussian mixture components K and λ0, λ1, λ2, λ3, λ4. The valida-
tion dataset was evaluated for downstream plaque detection tasks using the
model trained from Sect. 3.1. The optimal value of K is very important for our
final image translation results. A small K value can lead to blurring of local
image structures and a large K value can add to computation cost and more
uncertainty on the output images. We used K = 25 based on the validation
dataset performance. It is worth noting that the setting of K can vary between
datasets. In order to select the best generated image for cross-domain image seg-
mentation task, we also train a quality control network using an independent CT
dataset selected from DeepLesion data [19] to remove the synthetic CT images
with artifacts.

3.1 Calcified Plaque Detection and Segmentation

Labelling calcified plaques in the CT scans is very time consuming since the
plaques are very small, frequently on the order of just a few pixels in CT images.
In our experiments, we only have labelled training CT images from low dose
non-contrast CT scans. We trained a 2D detection and segmentation model [6]
on 75 low dose CT scans which contained a total of 25,200 images (transverse
cross sections/slices), including 2,119 with plaques. The training dataset was
divided into 10 folds and we used 9 folds as the training dataset and 1 fold
as the validation dataset for parameter selection. We shuffled the training and
validation dataset and trained 10 2D Mask R-CNN [3] models and applied these
models to our independent testing dataset. We report the mean and standard
derivation across all 10 models in Table 1. For this work we labelled an additional
testing dataset with 30 contrast enhanced CT scans and 30 non-contrast scans
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from a different dataset collected at University of Wisconsin Medical Center. It
had plaque labeled manually (7/30 of these scans contained aortic plaques, with
a total of 53 plaques overall).

Fig. 3. Visualization of synthetic non-contrast CT scans from contrast enhanced CT
(a) scans by (b) CycleGAN (c) UNIT (d) our model. We show two cases of median
quality generated images by all competing methods.

We selected an synthetic image which shows the median performance on
image translation (as shown in Fig. 3). Figure 3 (a) shows contrast enhanced CT
scans in the late phase (the kidneys are enhanced with bright pixel values). There
is a very small plaque in this image which was translated into non-contrast CT
scans by cycleGAN [21], UNIT [8] and our model. The whole translated images
looks very similar by all competing methods, however, the calcified plaque pixel
brightness is better preserved by our approach.

Quantitative Results. The calcified plaque detection and segmentation results
are shown in Table 1. Our model achieved similar plaque detection and segmen-
tation performance to the real pre-contrast CT scans (precision decreased about
> 1.5%, recall decreased about > 4%) and dice coefficients drops about > 0.1.
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Table 1. Plaque detection and segmentation results. The first column gives detection
results for the original data without image translation. The 2nd, 3rd, and 4th columns
give results for non-contrast (NC) and contrast enhanced (CE) plaque detection after
non-contrast to contrast enhanced image translation with different image translation
models. SYN= synthetic images.

Method Baseline CycleGAN [1] UNIT [4,8] Ours

Training NC NC & SYN CE NC & SYN CE NC & SYN CE

Testing NC NC NC NC

Precision 78.4 ± 1.82% 79.5 ± 1.75% 80.2 ± 1.68% 80.7 ± 1.65%

Recall 82.4 ± 2.45% 83.1 ± 2.26% 84.7 ± 2.13% 85.2 ± 2.03%

Dice 0.724 ± 0.245 0.733 ± 0.223 0.751 ± 0.218 0.756 ± 0.193

Testing CE CE CE CE

Precision 48.6 ± 3.52% 61.5 ± 2.87% 64.7 ± 2.64% 78.2 ± 2.58%

Recall 54.3 ± 3.64% 64.3 ± 3.21% 69.8 ± 3.05% 81.2 ± 2.87%

Dice 0.452 ± 0.251 0.534 ± 0.236 0.566 ± 0.198 0.676 ± 0.176

The detection and segmentation model trained on synthetic images generated
from UNIT [8] and CycleGAN [21], by contrast, shows a > 15% drop in preci-
sion, a > 13% drop in recall and drop > 0.18 in Dice coefficients caused by loss
of fine structures.

3.2 Pancreas Segmentation

Pancreas segmentation is very important for the diagnosis of pancreas cancer
and surgical planning. Pancreas segmentation is challenging since the pancreas
is very small compared to other internal organs and has large variance in its
shape and orientation. Most existing pancreas segmentation approaches focus
on segmenting pancreas only in contrast enhanced CT where the pancreas struc-
tures are more enhanced and have clearer boundaries. Current public pancreas
segmentation data are only labelled on contrast enhanced CT. We combined
two public contrast enhanced CT datasets for pancreas segmentation. The first
one includes 82 labelled contrast enhanced CT scans from the Cancer Imaging
Archive database and second one has 281 contrast enhanced CT scans from the
Medical Segmentation Decathlon database [10,11].

We use 10-fold cross validation and report the mean and standard derivation
across the 10 folds. In order to improve pancreas segmentation on non-contrast
CT images, we generated non-contrast CT from these contrast enhanced CT
and used them to train a cross-domain 3D segmentation model. We use the
multiple scale 3D Unet model proposed in [12] and compared with a 3D U-
Net trained using synthetic non-contrast CT scans generated the different image
translation models (CycleGAN [21], UNIT [4,8] and our model). We use 24
non-contrast CT scans annotated by an expert radiologist as the non-contrast
pancreas segmentation testing dataset.
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Table 2. Pancreas segmentation results with false positives pixel numbers and Dice
scores on contrast enhanced CT and non-contrast CT. The first column show the
baseline model which is only trained using contrast enhanced CT scans. Th second,
third, and last column show the results trained by contrast enhanced CT and synthetic
non-contrast CT generated by CycleGAN [21], UNIT [4,8] and our method respectively.
NC = non-contrast CT. CE = contrast enhanced CT. SYN = synthetic.

Method Baseline CycleGAN [21] UNIT [4,8] Ours

Training CE CE & SYN NC CE & SYN NC CE & SYN NC

Testing CE CE CE CE

Precision 85.7 ± 1.82% 87.2 ± 1.62% 88.1 ± 1.53% 89.5 ± 1.44%

Recall 86.8 ± 2.1% 88.7 ± 1.97% 89.5 ± 1.83% 90.7 ± 1.68%

Dice 0.728 ± 0.173 0.728 ± 0.154 0.731 ± 0.142 0.734 ± 0.136

Testing NC NC NC NC

Precision 78.1 ± 2.83% 82.8 ± 2.67% 83.2 ± 2.45% 84.7 ± 2.25%

Recall 81.5 ± 3.0% 84.3 ± 2.81% 86.2 ± 2.75% 87.2 ± 2.56%

Dice 0.642 ± 0.183 0.684 ± 0.172 0.697 ± 0.163 0.725 ± 0.153

Quantitative Results. Table 2 shows the quantitative results of cross domain
pancreas segmentation results on both contrast enhanced CT and non-contrast
CT using different image translation methods (CycleGAN [21], UNIT [8] and
our model). As shown in the top part of the table, the pancreas segmentation
results on contrast enhanced CT scans are similar for all competing methods.
Adding synthetic non-contrast CT scans in the training can also improve the
pancreas segmentation on contrast enhanced CT, and our method shows slight
improvement compared to all other methods. For pancreas segmentation on non-
contrast CT, adding synthetic non-contrast CT images in the training can sig-
nificantly improve the segmentation Dice score and reduce false positive pixels.
For example, CycleGAN and UNIT show an average improvement of Dice score
> 0.04/ > 0.05 and reduction in false positive pixels > 4000/ > 4500 compared
to the baseline model. Our model shows the best performance and achieves a
> 0.08 improvement in Dice score and a reduction of > 5000 false positive pixels
on average compared to the baseline model.

4 Conclusion

In this work, we proposed an image translation model using shared latent vari-
ables from a Gaussian mixture distribution to preserve fine structures on medical
images. We applied our method to two challenging medical imaging segmentation
tasks: cross domain (non-contrast and contrast enhanced CT) calcified plaque
detection/segmentation and pancreas segmentation. We demonstrated that our
model can translate the medical images across different domains with better
preservation of fine structures compared to two state-of-the-art image transla-
tion models for natural images. In the future work, we will explore the application
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of this model to translating medical images across multiple domains, for exam-
ple contrast enhanced CT scans at different phases from non-contrast CT scans.
Possible applications of this method are generating synthetic images to reduce
radiation dose or creating 100% contrast enhanced CT scans from 10% dose
contrast enhanced CT scans to reduce the dose of intravenous contrast agent to
be used on patients.
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