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Background: Abdominal aortic atherosclerotic plaque burden may have clinical significance but manual measurement is time-consuming
and impractical.

Purpose: To perform external validation on an automated atherosclerotic plaque detector for noncontrast and postcontrast abdominal
CT.

Materials and Methods: The training data consisted of 114 noncontrast CT scans and 23 postcontrast CT urography scans. The testing
data set consisted of 922 CT colonography (CTC) scans, and 1207 paired noncontrast and postcontrast CT scans from renal donors from
a second institution. Reference standard data included manual plaque segmentations in the 137 training scans and manual plaque burden
measurements in the 922 CTC scans. The total Agatston score and group (0�3) was determined using fully-automated deep learning soft-
ware. Performance was assessed by measures of agreement, linear regression, and paired evaluations.

Results: On CTC scans, automated Agatston scoring correlated highly with manual assessment (R2 = 0.94). On paired renal donor CT
scans, automated Agatston scoring on postcontrast CT correlated highly with noncontrast CT (R2 = 0.95). When plaque burden was
expressed as a group score, there was excellent agreement for both the CTC (weighted kappa 0.80 § 0.01 [95% confidence interval:
0.78�0.83]) and renal donor (0.83 § 0.02 [0.79�0.86]) assessments.

Conclusion: Fully automated detection, segmentation, and scoring of abdominal aortic atherosclerotic plaques on both pre- and post-
contrast CT was validated and may have application for population-based studies.
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KEY RESULTS

1. On noncontrast CT colonography scans, automated atherosclerotic
plaque burden scores showed excellent agreement with manual
scores (R2 = 0.94, weighted kappa 0.80 § 0.01 [95% C.I.:
0.78�0.83]).
2. On paired noncontrast and postcontrast abdominal CT scans, auto-
mated atherosclerotic plaque burden scores showed excellent agree-
ment (R2 = 0.95, weighted kappa 0.83 § 0.02 [0.79�0.86]).
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INTRODUCTION
C ardiovascular disease is the most frequent cause of
death in Americans. Morbidity and mortality are fre-
quently associated with atherosclerotic disease in

the coronary and carotid arteries. Recent evidence indi-
cates that atherosclerosis in the abdomen may precede
that in the coronaries and carotids and may be more pre-
dictive of cardiovascular events than standard clinical risk
scores (1�4). Therefore, assessment of abdominal athero-
sclerotic burden may have clinical utility for prognosis
and early detection and treatment.

Imaging methods for noninvasive diagnosis of athero-
sclerotic plaque include CT, MRI, and ultrasound. Of
these, the most frequently used are CT to assess plaque in
the heart, and ultrasound in the neck and peripheral arter-
ies. Coronary artery calcium screening is usually per-
formed on noncontrast CT. Automatic identification of
calcified plaque on contrast-enhanced studies is inherently
much more difficult and not routinely performed as adja-
cent iodine density can be in the same Hounsfield Unit
(HU) range as calcium.

Given the high frequency of abdominal CT scanning in
the United States, automated assessment of abdominal ath-
erosclerotic burden for opportunistic screening might be clin-
ically useful. Because most abdominal CT scanning is
performed with intravenous contrast, plaque detection is
challenging. The purpose of this paper is to perform external
validation on an automated atherosclerotic plaque detector
for noncontrast and postcontrast abdominal CT.
TABLE 1. Patient Demographics

Dataset CTC Renal D

Number (n) 950 1250
Age (years) 57.9 § 8.5 (31�94) 45.1 § 1
Men (n) 447 498
Women (n) 503 752
Number included (n) 922 1207
Number excluded (n) 28 43
Number used for training (n) 0 0
Number used for testing (n) 922 1207

Data for age are mean § standard deviation (range).
* From 89 unique patients having 1-4 scans each.
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MATERIALS ANDMETHODS

This study was approved by the Institutional Review Boards
of the respective institutions. The requirement for informed
consent was waived.
Patient Population

The CT scans were performed at two tertiary care hospitals.
Four different CT data sets were utilized. The first is a conse-
cutive series of 950 CT colonography (CTC) scans (after
exclusion of 80 scans having artifacts or quantum mottle that
prevented accurate calcium measurements) performed at insti-
tution one (3). The second is a consecutive series of 1250 renal
donor CT scans performed at institution one (manuscript sub-
mitted for publication) (5,6). The third is a consecutive series
of 120 CT scans from PET-CT of patients with vasculitis par-
ticipating in a clinical trial at institution two (7). The fourth is a
selected series of 24 CT urography scans performed for a vari-
ety of indications at institution two. Patient demographics are
provided in Table 1. A standards for reporting of diagnostic
accuracy studies chart showing exclusions and case assignment
to training and testing sets is shown in Figure 1.
CT Study Protocols

The CTC data set was previously described (3). The patients
underwent bowel cleansing and were administered oral con-
trast agent. The renal donor patients underwent multiphase
abdominal CT including the intravenous administration of
iodinated contrast agent. The CT scans performed as part of
the PET/CT were done using low-dose technique without
either intravenous or oral contrast. CT urography scans were
part of a multiphase abdominal examination. Only the
delayed phase CT urography images were used. Scan proto-
cols are further described in Table 2.
Data Preparation

The CT scans, originally in DICOM format, were converted
to NIFTI volumes. The CTC and renal donor scans were
onors PET-CT CT Urography

120* 24
2.5 (18-76) 57.6 § 15.3 (20�87) 57.2 § 18.6 (22�79)

44 18
76 6
114 23
6 1
114 23
0 0



Figure 1. STARD Chart showing patient flow.

TABLE 2. CT scan characteristics

Dataset CTC Renal Donors PET-CT CT Urography

Scanner manufacturer GE medical systems GE medical systems GE medical (112); Siemens (10) Siemens(19), Other (7)
kVp 120 100�140 120 100�120
Slice thickness (mm) 1.25 5 3 2
Reconstruction interval (mm) 1 3 3 1
IV contrast present (n) 0 1250 0 24
IV contrast absent (n) 950 1250 120 0

Note: A small number of scans had other source image slice thicknesses, reconstruction intervals, and kVp settings.
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retrospectively reformatted to 3 mm slice thickness. Scan
information was extracted from the DICOM headers using
an automated script. Scan information and plaque detections
results were organized and analyzed in a relational database
(Access V2016, Microsoft, Redmond, Washington). Only
axial CT images were analyzed; sagittal images are shown for
illustrative purposes only.
Determination of Lumbar Anatomic Landmarks

For the CTC dataset, the automated determination of
abdominal atherosclerotic plaque burden was computed
between the aortic hiatus and aortic bifurcation to correspond
with a prior study (3). The slices containing the aortic hiatus
and aortic bifurcation were determined fully automaticallyus-
ing a previously published body part regressor (8). To deter-
mine the output of the body part regressor that most closely
corresponded to these slices, a radiologist (S.L., a radiologist
with 8 years of experience reading abdominal CT) manually
located these slices on 20 randomly selected CTC cases. The
average body part regressor outputs for these slices on the 20
random CTC cases were then used to identify these slices on
the remaining CTC scans.

The automated determination of abdominal atheroscle-
rotic plaque burden for the renal donors dataset was com-
puted between the mid L1 and mid L4 levels to correspond
with prior studies (4,9). The L4 level was used as a surrogate
for the aortic bifurcation, which was the inferior extent of
plaque measurement in Ref. (3).

For the renal donors dataset, the levels were deter-
mined using existing code for spine segmentation to
roughly determine the L1 level and generate coordinates
for a bounding box between T12-L5 (10). To refine this
level and obtain the L4 level, the bounding box was fed
into a multiclass 3D U-Net which was trained to segment
and classify T12-L5. The 3D U-Net architecture used
3
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was a six class variant (11). The average heights of the L1
and L4 segmentations from the 3D U-Net were used. For the
renal donor dataset, the levels were determined on the non-
contrast scans. The matching levels on the postcontrast scans
were determined using the scanner table position derived from
DICOM data under the assumption that the patient did not
move between scans. Image registration was not utilized.
Reference Standard

The plaques on the CT part of 114 noncontrast low dose
PET-CT scans were manually annotated by a radiologist (M.
B., a radiologist with 23 years of experience reading abdomi-
nal CT) who used a locally-developed software tool. The
software tool determined the Agatston score using the stan-
dard threshold of 130 HU (12). These scans were cropped to
include only from the lower lung through the pelvis.

Preliminary results showed that the contrast-filled ureters
on the delayed-phase postcontrast renal donor CT scans were
frequently mistaken for aortic calcified plaques. To train the
deep learning software to ignore the ureters, 23 CT urogra-
phy scans were manually annotated by a radiologist (S.L., a
radiologist with 8 years of experience reading abdominal CT)
using 3D Slicer (V4.10.2, National Alliance for Medical
Image Computing, Boston, Massachusetts, http://www.
slicer.org/) (13). A higher threshold of 250 HU was used for
labeling plaques in this dataset because the contrast in the
aorta made it impossible to use 130 HU.

For the CTC dataset, the manual determination of abdominal
atherosclerotic plaque burden was computed between the aortic
hiatus and aortic bifurcation as described in Ref. (3). Briefly, a
radiology resident (S.D.O, with 3 years of radiology research
experience) used a semiautomated tool (V3D-Calcium Scoring;
Viatronix, Stony Brook, New York) to retrospectively quantify
the abdominal aortic calcified plaque. The user drew regions of
interest around the vessel of interest on the supine axial images
and the tool used a threshold of 130 HU and region growing
algorithms to report the Agatston score.
Abdominal atherosclerotic plaque detection algorithm

We first tested the 3D U-Net architecture developed by Çiçek
et al. and modified by Isensee et al. (14,15) for brain tumor seg-
mentation. We then tested a modified 3D U-Net architecture
(16). This modified version contained additional first and last
convolutional layers that included a 7£ 7£ 7 filter with
2£ 2£ 2 stride and 4 times as many filters in every other layer
(16,11). We found the modified model performed better. This is
not surprising since it contains many more parameters (28.5 M vs
1.78 M). The modified model was used herein.

The choice of loss function is critical for small object /
highly imbalanced segmentation, with traditional loss func-
tions performing poorly (17). To ensure a gradient value
when working with subvolumes that contain no plaque, a
loss summing the false positive and false negative voxels was
used. Previously this loss proved useful for subvolume-based
4

vertebral segmentation (11). To ensure the segmentations
were high quality, we added a generalized Dice loss which
has previously been shown to be useful for small object seg-
mentation in MRI (18,19). In this context generalized Dice
loss considers two classes (plaque and nonplaque voxels) and
dynamically reweights these classes inversely to how often
they appear in each subvolume. The loss function is described
in more detail in the Supplemental Materials.

All images were resampled to 1£ 1£ 1 mm and clipped to
�100�1000 HU. The size of the subvolumes was
128£ 128£ 128 mm. For each plaque in the ground truth, 32
augmented subvolumes were created. These subvolumes were
created with random jitter (+/�16 pixels in each direction)
around the center mass of each plaque label combined with a
random rotation (+/� 30 degrees around a random axis). Addi-
tionally, about half the augmented versions were generated with
small random elastic deformation. In addition, normal subvo-
lumes without plaque were generated through random sampling
of each image.

Altogether 47,659 subvolumes were generated, with
14,818 (31%) being subvolumes with no plaque. Out of
these, 2256 (15%) were from urography cases. The urography
subvolumes were sampled in a weighted manner during
training so they occurred about equally as often as the nonur-
ography cases. A small sample of 200 subvolumes was used as
a validation set (this was only used to monitor the accuracy
during training). Training was performed using the Adam
optimizer with a batch size of 1 and ran for about 120,000
iterations. Group normalization (max group size 16) was used
to help stabilize and speed up training. During training, the
fraction of false positive voxels per image and standard one
class Dice score in the validation set were monitored, and
training was ended when these values plateaued.

Postprocessing was done to reduce false positive detections
on ribs. We employed a circular filter with radius 6 cm cen-
tered in each 2D CT slice. The filter removed all detections
outside the circle. This assumes that the abdominal aorta is
located near the center of the imaging volume, which is true
in general for routine abdominal CT. The filter radius was
chosen empirically to exclude the rib false positives without
affecting the aortic true positives.

Images showing the CT scans with and without plaque
detections were made using 3D Slicer (V4.10.2, National
Alliance for Medical Image Computing, Boston, Massachu-
setts, http://www.slicer.org/) (13).
Statistical Analysis

Linear regression was performed to compare plaque measured
on the CTC dataset performed using the automated and manual
assessments; and to compare the plaque measured automatically
on the precontrast and postcontrast renal donor CT scans (Excel
2016, Microsoft, Redmond, WA; and MedCalc V16.4.3, Med-
Calc software, Ostend, Belgium). Confusion matrices were used
to compare Agatston scores by groups for scores 0, >0 and
<100, 100�300, >300 (Groups 0�3, respectively) (Access

http://www.slicer.org/
http://www.slicer.org/
http://www.slicer.org/
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2016, Microsoft, Redmond, Washington). The intergroup
agreement of the Agatston scores was assessed using quadratic
weighted kappa (MedCalc V16.4.3, MedCalc software, Ostend,
Belgium). p values � 0.05 were considered significant. Reasons
Figure 2. Agatston scores for CT colonography and renal donor datas
automated and manual assessments showing (a) linear regression and (b
scores for noncontrast and postcontrast datasets showing (c) linear regre
and R2 are shown. For (b, d), bias and 95% limits-of-agreement are show
for false negatives and false positives were assessed visually from a
random subset of 20 CTC cases and 20 renal donor cases.
ets. (a, b) For CT colonography, comparison of Agatston scores for
) Bland-Altman plots. (c, d) For renal donors, comparison of Agatston
ssion and (d) Bland-Altman plots. For (a, c), linear regression equation
n. For (c), full and partial range of scores are shown.
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Figure 3. Examples of concordant plaque burden measurements on midline sagittal reformatted CT images. (a) 74 year old man in CT colo-
nography dataset and (b) 62 year old woman in renal donor dataset. In (B), (left pair) noncontrast and (right pair) postcontrast images are
shown. For each example, the images are shown without and with the automated detections (green). In (a), Agatston group 3 was recorded for
both manual and automated measurements. In (b), Agatston group 3 was recorded for both automated noncontrast and postcontrast mea-
surement. (Color version of figure is available online.)

ARTICLE IN PRESS
SUMMERS ET AL Academic Radiology, Vol&, No&&,&& 2020
RESULTS

In the CTC dataset, plaque segmentation was successful in
97.1% (922/950) of the scans. A scatterplot comparing the
manual and automated plaque scores is shown in Figure 2a.
The slope of the linear regression was 0.84 [0.82, 0.85] and
the intercept was �38 [�84, 8] HU (R2 = 0.94). The auto-
mated score underestimated the manual score by 16%. A
Bland-Altman plot of the same data is shown in Figure 2b.
An example plaque segmentation in the CTC dataset is
shown in Figure 3a.

Plaque segmentation was successful on both the non-
contrast and postcontrast renal donor scans in 99.7%
(1207/1211) of patients. A scatterplot comparing the
automated noncontrast and postcontrast plaque scores is
shown in Figure 2c. The slope of the linear regression
was 0.69 [0.68, 0.70] and the intercept was 4.5 [�3.6,
12.6] HU (R2 = 0.95). The automated postcontrast score
underestimated the automated noncontrast score by 31%.
A Bland-Altman plot of the same data is shown in
Figure 2d. An example plaque segmentation in the renal
donor dataset is shown in Figure 3b.
6

For converting postcontrast plaque scores to noncontrast
scores, the dependent and independent variables can be
swapped. In this setting, the slope of the linear regression was
1.39 [1.37, 1.40] and the intercept was 5.2 [�6.3, 16.6] HU
(R2 = 0.95). For a linear regression in which the noncontrast
and postcontrast plaque scores are zero in the setting of no
plaque, the intercept can be set to zero; the slope of the linear
regression was 1.39 [1.37, 1.40].

Confusion matrices for Agatston score groupings are
shown in Table 3. Plaque was more prevalent in the CTC
dataset than in the renal donor dataset. This was expected
because the patients in the CTC dataset were older (Table 1).
In the CTC dataset, the automated plaque detector tended to
underestimate the plaque group by assigning a lower group
number. In the renal donor dataset, the automated plaque
detector tended to overestimate the plaque group on the
postcontrast scans for Group 0 on the noncontrast scans by
assigning a higher group number. For intergroup agreement,
weighted kappa was 0.80 § 0.01 (95% confidence interval:
0.78�0.83) for the CTC dataset and 0.83 § 0.02
[0.79�0.86] for the renal donor dataset.



TABLE 3. Confusion matrices for Agatston score groupings for CT colonography and renal donor datasets

CTC Agatston Group Auto Renal Donors Agatston Group Auto Precontrast

Agatston
Group Manual

0 1 2 3 Agatston Group
Auto Postcontrast

0 1 2 3

0 85 8 2 1 0 731 43 3 1
1 231 104 11 4 1 63 65 31 4
2 20 40 52 7 2 35 4 35 37
3 8 6 34 309 3 16 1 3 135

Note: For CTC, scoring was measured from the diaphragm to the aortic bifurcation. For renal donors, scoring was measured from the mid L1
to mid L4 levels.
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In the random subset of CTC cases, no false negatives were
observed. The most common cause of false positive detec-
tions in the CTC dataset was bowel contents in one case. In
the random subset of renal donor cases, the most common
cause of false negatives was under-segmentation of plaque in
eight cases. The most common causes of false positive detec-
tions in the renal donor dataset were on excreted contrast in
the ureters in two cases. Example discordant plaque
Figure 4. Examples of discordant plaque burden measurements on mid
nography dataset and (b) 33 year old woman in renal donor dataset. For
contrast images are shown. For each example, the images are shown
detections occurred below the automatically-determined aortic bifurcatio
was 3, the automated group was 2. In (b), false positive detections occu
aorta. Consequently, while the automated noncontrast Agatston group
figure is available online.)
segmentations in the CTC and renal donor datasets are
shown in Figure 4.
DISCUSSION

In this paper, we found that, with a linear correction, a 3D-
UNet deep learning method was able to accurately estimate
Agatston scores on a large noncontrast CTC dataset with
line sagittal reformatted CT images. (a) 66 year old man in CT colo-
the renal donor example, (far left) noncontrast and (right three) post-
without and with the automated detections (green). In (a), some

n level (yellow line). Consequently, while the manual Agatston group
rred on the left ureter; there is neither plaque nor detections on the
was 0, the automated postcontrast group was 3. (Color version of
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excellent agreement on Agatston score group. On the basis of
nearly identical Bland-Altman analyses, the results on the
CTC dataset were comparable to those reported on the same
dataset using a more complex algorithm (9). Similarly, with a
linear correction, the method was able to accurately estimate
Agatston scores on a large postcontrast renal donor dataset
with excellent agreement on Agatston score group compared
to the corresponding noncontrast scan.

Because of the need for a linear correction, the method will
be most useful for population analyses of plaque burden. For
assessment of an individual patient, further work will need to
be done to improve accuracy. For clinical verification in an
individual patient, we envision a graphical display showing the
original CT scan in axial, coronal, and sagittal orientations
with a colored overlay showing the detected plaques.

While there is much work on coronary plaque detection,
there are far fewer works on extra-coronary plaque detection.
Examples include abdominal plaque assessment on CTC and for
assessing ethnic-specific risks (20,21). Extra-coronary plaques
may be important associative biomarkers for disorders such as
polyps of the colon (22), prostate cancer (23), and other types of
cancer (24). In 2004, Isgum et al.(25) reported a nondeep learn-
ing algorithm that detected plaques in 40 abdominal CT scans.
In 2017, Liu et al.(26) applied the faster region-based convolu-
tional neural network (R-CNN) to pelvic plaque detection. An
improvement on this method was gained on body CT by
retraining with 10 pseudo-classes for false-positives (27,28). A
recent work used a Mask R-CNN to detect plaques in CT scans
from 9032 patients, demonstrating the utility of such methods
for large scale association studies (9). Abdominal plaque burden
assessed automatically has been shown to be predictive of cardio-
vascular morbidity and mortality (4).

It has been shown that the 3D versions of both the U-Net
and Mask R-CNN perform better than 2D versions (i.e., sin-
gle slice based) when applied to a lung lesion detection task
(29). A variant of the 2D version, where several (seven) slices
are fed into different channels, performed about the same as
the fully 3D version for both the Mask R-CNN and U-Net
(29). Thus, incorporating information from neighboring slices
seems to be a key.

For the task of measuring plaque on postcontrast scans,
Zhu et al.(30) used a generative adversarial network (GAN)
to convert a postcontrast scan to a noncontrast scan. Zhu’s
method preserved the plaque shape and CT attenuation bet-
ter than an alternative GAN-based method (16).

We do not yet know how important it is to distinguish an
Agatston score of 10 (Group 1) from a score of 0 (Group 0)
for the abdominal aorta. More research will need to be done
in this area, particularly on how the definition of the plaque
groups affects clinical utility.

The plaque detector, trained on low dose PET-CT scans,
generalized well to low dose CTC scans and routine dose
renal donor CT scans. In addition, it generalized well to the
range of slice thicknesses used in the different datasets. This is
beneficial because unlike coronary CT, abdomen CT is done
for a variety of indications using a variety of techniques.
8

Plaque undersegmentation was particularly problematic for
the postcontrast scans. This is due to difficulty finding the
edge between the plaque and high attenuation enhanced
blood. Potential reasons for this difficulty include volume
averaging artifact, scatter or pseudoenhancement due to the
iodine in the lumen, the higher threshold used for the CT
urography training cases, and differences in kVp. A higher
threshold can reduce plaque scores substantially (31).

This study has several limitations. On noncontrast CTC
scans, the plaque detector tended to underestimate the plaque
group, and on postcontrast renal donor scans tended to over-
estimate the lowest plaque group. These under- and overesti-
mates could either cancel out or compound in complex
ways, leading to inaccuracies. Plaque undersegmentation will
need to be addressed in future improvements to the method.
The renal donor scans sometimes had different kVp settings
on the pre- and postcontrast scans. This could lower Agatston
scores on the scan with higher kVp. This study, like most cor-
onary plaque studies, assessed only calcified plaque. Measure-
ment of noncalcified plaque may be clinically useful, but is
more challenging.

In summary, we showed that abdominal atherosclerotic
plaque burden can be assessed accurately and automatically
on both noncontrast and postcontrast scans. Plaque burden
assessed automatically may have utility for population-based
assessment of abdominal atherosclerotic disease.
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