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This paper describes a simple method for estimating the aqueous solubility (ESOL- EstimatedSOLubility)
of a compound directly from its structure. The model was derived from a set of 2874 measured solubilities
using linear regression against nine molecular properties. The most significant parameter was calculated
logPoctanol, followed by molecular weight, proportion of heavy atoms in aromatic systems, and number of
rotatable bonds. The model performed consistently well across three validation sets, predicting solubilities
within a factor of 5-8 of their measured values, and was competitive with the well-established “General
Solubility Equation” for medicinal/agrochemical sized molecules.

INTRODUCTION

Aqueous solubility is one of the key physical properties
of interest to a medicinal1 or agrochemical2 chemist. Solubil-
ity affects the uptake/distribution of biologically active
compounds in living material and the environment, thus
affecting their potential efficacy and marketability. Accurate
equilibrium solubility determination is a time-consuming
experiment, and it is useful to be able to assess solubility in
the absence of a physical sample.

There have been many methods developed that predict
solubility, either solely from molecular structure or using
more easily obtained measurements. Group contribution
methods3,4 analogous to CLOGP5 have been developed as
have a variety of methods based on some form of nonlinear
regression combined with topological parameters.6-8 Jor-
gensen and Duffy have used Monte Carlo simulation with
QSPR,9 while Gasteiger10 and Wegner11 used other 3D
descriptors. Approaches based on quantum mechanics cal-
culations have also been tried.12,13 Solvatochromic methods
such as LFER14 form a distinct class of prediction method,
as does mobile order theory.15

A small group of methods have been founded on the
observation that logPoctanol(logP) shows a strong correlation
with aqueous solubility. The preeminent such method is
probably the “General Solubility Equation” (GSE16), which
has just two variablesslogP and melting point (Tm). These
parameters handle the partition between liquid compound
and water (logP) and correct for the transition from solid to
liquid (Tm). Octanol partition can be calculated with reason-
able accuracy from a compound’s structure,17 but estimating
melting point is far harder. Where a measured melting point
is available, GSE becomes the method of choice, while other
methods, based solely on structure, have to be used in
situations whereTm is not available.

Two recent papers have discussed structure-only methods
based on logP estimates.18,19Butina used an AI technique to
produce a small number of rules and local models based on
a proprietary logP estimate and additional structural terms.
Cheng used a genetic algorithm to select variables for a linear

model, with AlogP9820 (a logP estimate similar to CLOGP)
being the most significant contributor. The method described
in this paper (named ESOL forEstimatedSOLubility) is in
a similar vein, relying on CLOGP version 4.175 to provide
a reasonably accurate logP estimate, which is then augmented
by a small number of additional terms. If ESOL is distinctive,
it is in terms of its relative simplicity versus its predictive
performance. Only nine molecular descriptors (used in an
earlier paper on bioavailability2) were initially considered
using straightforward linear regression, with the final model
having four parameters, just two more than the GSE. I have
found that ESOL works particularly well on compounds of
agrochemical interest, often out-performing the GSE in terms
of average absolute error of prediction and the method is
fast enough to be used on large numbers of “virtual”
compounds such as putative compound libraries or potential
vendor purchases.

METHOD

The molecules used to derive the model were initially
described by 9 parameters calculated directly from their 2D
connectivity. This initial set of parameters included the
following:

1. clogPscalculated using Daylight CLOGP version 4.725

(fragment database version 17)
2. Molecular weight (MWT)
3. Rotatable bonds (RB)scalculated using an in-house

program from SMILES. Daylight SMARTS5 substructures
define rotatable bonds.21

4. Aromatic proportion (AP)scalculated using an in-house
program from SMILES. Uses the Daylight SMARTS defini-
tion of aromatic ([a]) to count “aromatic atoms”. The
proportion of heavy atoms in the molecule that are in an
aromatic ring.10

5. Non-carbon proportionscalculated using an in-house
program from SMILES. The proportion of heavy atoms in
the molecule that are not carbon ([!#6] in SMARTS).

6. H-bond donor countscalculated using an in-house
program from SMILES.22

7. H-bond acceptor countscalculated using an in-house
program from SMILES.22* Corresponding author e-mail: john.delaney@syngenta.com.
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8. Polar surface areascalculated using Peter Ertl’s program
from SMILES.23

Multiple linear regression (Microsoft Excel 2000) was
performed on a training set of 2874 neutral compounds (12%
of original set of compounds predicted to be charged at pH724

were excluded) with measured aqueous solubilities (log M/L
at 25°C) against the eight parameters. The significance of
each parameter was assessed in terms of its absolute
t-statistic. It was found that only the first four parameters
(clogP, MWT, RB, and AP) made significant contributions
to the model (absolute t-statistic> 2), and the other five
parameters were discarded. This result was checked using
stepwise multiple regression within the Cerius225 molecular
modeling package with the same outcome. This is a crude
way of selecting parameters for a model and is open to the
charge that statistics related to model quality will be
overoptimistic (there are 70 ways of selecting 4 parameters
from a choice of 8). By way of justification, I would state
that logP was always going to be included in any model (i.e.
it should be treated as a “given”), and there were reasonable
grounds for treating molecular weight the same way (see
ref 26 where the GSE was augmented with a molecular
weight term). This reduces the number of combinations down
to no more than 35, and, combined with the large number
of data points, the model seems to be statistically significant.
A summary of the final regression statistics and the t-statistics
for the intercept and the four parameters is given in Table
1.

All four parameters made significant (P < 0.01) contribu-
tions to the model. The final equation for solubility (Sw) in
M/L was

The training set was made up from three sources, each
with different properties. The “Small” set mainly consisted
of low molecular weight organic compounds compiled from
the literature by Abraham’s group at University College
London (particularly Joelle Le14) and provided to the author
by Kei Enomoto. The “Medium” set was made up of
pesticide products27 (using the reported measured solubilities
in the Pesticide Manual) of moderate molecular weight
(200-300). The “Large” set had Syngenta proprietary
compounds with equilibrium solubilities measured in-house,
their molecular weight tending toward the heavier end of
the scale (300-400). The overall property averages, with
their standard deviations in brackets, for the three subsets
are shown in Table 2.

The method was tested with a blind test set of 528 in-
house compounds and two sets of literature compounds.9,28

RESULTS

The performance of the final equation was judged by the
average absolute error (AAE) of prediction, standard error
(SE), and correlation coefficient (R2). These were compared
with GSE results for 1305 compounds from the training set
with measured melting points. The AAE results were further
broken down by subset (Table 3).

Graphs of the estimates from the two methods for the 1305
compounds are shown (Figures 1 and 2).

The three subsets of the collection showed some variation
in average absolute errors. The GSE performed much better
on the “Small” set than on the other two sets, while ESOL
worked about as well across all three sets. The GSE was
originally derived from a set of molecules similar to our
“small” set (reference compounds) which may explain why
it did well here, while ESOL seemed to work better on
pesticide/drug sized compounds, a noted weakness of the
GSE.29

To validate the model, three sets of compounds were used.
I obtained more in-house measured solubility results to create
a blind test set with 528 compounds. ESOL produced anR2

of 0.55, a standard error of 0.96, and an average absolute
error of 0.83. This seemed consistent with the regression
results obtained for the training set.

The model was also assessed on a small set of literature
compounds to compare its performance against other pub-
lished studies. This set of 21 compounds has been used
extensively for solubility prediction method validation since
its introduction by Yalkowsky.28 I have used this set with
Klopman’s amended experimental solubility values,4 and the
results are summarized in Table 4 (allSw values in log M/L).

Liu, Huuskonen, Wegner, Gasteiger, and Tetko all used
some form of neural network as their preferred method for
model production, while ESOL, Kuhne, and GSE used
multiple linear regression. The way the molecules were
described also varied with Wegner and Gasteiger favoring
3D descriptors, Liu, Huuskonen, Kuhne, and Tetko utilizing
2D/connectivity-based descriptors, and ESOL and GSE using
whole molecule descriptors. Despite their relative simplicity,
ESOL and GSE perform remarkably well, achieving com-
parable results to most of the other methods.

Finally, I ran ESOL against a set of 150 literature
compounds,9 which had also been studied using the GSE.30

These molecules were split by the authors into a set of
reference organic molecules (65 compounds, mean MWT
) 114), a set of drug/drug-like molecules (64 compounds,
mean MWT) 269), and a set of heterocycles/pesticides (21
compounds, mean MWT) 171). Taking the whole set,
ESOL produced an AAE of 0.71 against GSE’s AAE of 0.45
(Figures 3 and 4). However, if the drug/drug-like subset is

Table 1. Summary of Regression Statistics

no. of
compds R2 SE F-statistic intercept clogP MWT RB AP

2874 0.72 0.97 1865 2.8 -53 -32 6.4 -10

Log(Sw) ) 0.16-0.63 clogP- 0.0062 MWT+
0.066 RB- 0.74 AP

Table 2. Molecular Property Averages/Standard Deviations for Whole Training Set and “Small”, “Medium”, and “Large” Subsets

measured
solubility clogP

molecular
weight

rotatable
bonds

aromatic
proportion

non-carbon
proportion

donor
count

acceptor
count PSA

no. of
compds

“Small” -3.1 (2.1) 2.7 (2.0) 205 (103) 1.2 (2.2) 0.37 (0.34) 0.26 (0.18) 0.7 (1.1) 1.0 (1.3) 35 (36) 1144
“Medium” -4.0 (2.0) 3.3 (1.8) 294 (89) 1.7 (1.9) 0.36 (0.23) 0.34 (0.13) 0.5 (0.8) 1.7 (1.1) 51 (27) 485
“Large” -4.3 (1.3) 3.5 (1.4) 341 (71) 2.0 (1.7) 0.45 (0.16) 0.32 (0.08) 0.6 (0.8) 2.2 (1.1) 59 (23) 1245
all -3.7 (1.8) 3.0 (1.8) 279 (108) 1.6 (2.0) 0.40 (0.26) 0.30 (0.13) 0.7 (0.9) 1.7 (1.3) 40 (31) 2874
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considered, the gap between the AAEs is substantially
reduced (ESOL AAE) 0.60, GSE AAE) 0.50). Once
again, it seemed that ESOL became more competitive with
GSE for larger molecules.

DISCUSSION

The aim of this work was to produce a robust alternative
to solubility estimation by GSE where the melting point of
the compound was unknown. GSE sets a very high standard
for small, organic reference molecules, and ESOL struggles
to match it in terms of average absolute error. A point worth
noting with the “Small” molecule set is that a substantial

proportion of the compounds has melting points (Tm) below
25 °C, while the “Medium” and “Large” sets have very few
compounds such as this. If these low melting point com-
pounds are excluded (i.e. compounds whereTm makes no
contribution to the GSE) the GSE’s average absolute error
jumps from 0.51 to 0.65. The same effect can be observed
in the 150-member literature set where exclusion of com-
pounds with low melting points raises the GSE’s average
absolute error from 0.45 to 0.54. Excluding the same
compounds from ESOL has little effect on its average
absolute error. The results for larger compounds suggest that
ESOL and GSE tend to converge in terms of their absolute
errors, with ESOL maintaining a pretty consistent value
across a wide range of molecular weights (150-500)s
predicted solubilities within a factor of 5-8 of their measured
values.

The literature methods mentioned earlier tend to fall into
a number of distinct types depending on the combination of
molecular descriptors used (2D/connectivity,3,6-8 3D,10,11or

Figure 1. ESOL predicted solubilities for 1305 training compounds with measured melting points.

Figure 2. GSE predicted solubilities for 1305 training compounds with measured melting points.

Table 3. Comparison of ESOL and GSE Results Across Training
Subsets

R2

(all)
SE
(all)

AAE
(all)

AAE
(“Small”)

AAE
(“Medium”)

AAE
(“Large”)

ESOL 0.69 1.01 0.75 0.75 0.81 0.71
GSE 0.67 1.05 0.81 0.47 0.90 0.93
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whole molecule16) and the method used to derive the model
(broadly linear regression or some form of nonlinear, AI
technique particularly neural networks). There does not seem
to be a clearly superior type of molecular descriptor, as the
three types seem to produce broadly comparable results.
Speed of computation and immunity from conformational
uncertainty might favor 2D and whole molecule descriptors
for use with large libraries, although the GSE’s need for a
melting point value rules it out for this type of application.
The model building techniques offer a starker choice. It
seems clear from Table 4 that nonlinear methods produce
better models when judged by summary statistics. This must
be weighed against increased model complexity and the
rather gnomic nature of neural nets.

In comparison to many of the methods in the literature
for predicting solubility directly from structure, ESOL is
remarkably simple. It was not possible to directly compare
its performance against the Cheng model,19 but the reported
statistics (AAE) 0.77 on a validation set of drugs) indicated
that they were similar. Butina18 does include estimates for
10 (out of 21) compounds in one of the literature data sets,28

and a like-for-like comparison with ESOL results shows
ESOL performing slightly better. Starting from a relatively
accurate (CLOGP version 4.175) logP estimate clearly helps
enormously, and the molecular weight factor has been noted
before.26 The aromatic proportion (AP) parameter seems to
be key to the method’s success, and while it has been
mentioned in relevant literature,10 it assumes a much higher

Table 4. Experimental against Assorted Predicted Solubilities for a Set of 21 Compoundsa

common name CAS no.
experimental

values4,28 ESOL Liu7 Huuskonen6 Kuhne3 Wegner11 Gasteiger 10 Tetko8 GSE

antipyrine 60-80-0 -0.56 -1.79 -1.41 -1.29 -1.9 -1.74 -1.31 -0.89 -0.56
aspirin 50-78-2 -1.72 -1.98 -2.1 -1.69 -1.93 -1.81 -1.87 -1.81 -1.62
atrazine 1912-24-9 -3.85 -2.95 -1.51 -3.51 -3.95 -2.82 -3.83 -3.7 -3.5
benzocaine 94-09-7 -2.32 -2.38 -1.45 -1.79 -2.05 -2.19 -1.63 -2.06
chlordane 57-74-9 -6.86 -5.88 -7.32 -7.29 -6.51 -6.47 -7.66 -7.23 -5.3
chlorpyrifos 2921-88-2 -5.49 -4.89 -4.5 -5.61 -3.75 -6.41 -4.79 -5.31 -4.17
DDT 50-29-3 -8.08 -6.47 -7.93 -7.67 -7.75 -6.85 -7.86 -7.59 -7.1
diazepam 439-14-5 -3.76 -4.03 -4.08 -4.05 -4.51 -4.14 -4.81 -4.37 -3.66
diazinon 33-41-5 -3.64 -3.95 -3.56 -4.01 -4.98 -4.18 -2.66 -3.43
diuron 330-54-1 -3.8 -3.30 -2.85 -2.86 -3.38 -3.98 -5.04 -4.91 -3.52
lindane 58-89-9 -4.64 -3.97 -4.91 -4.71 -5.08 -3.98 -5.04 -4.91 -4.13
malathion 121-75-5 -3.37 -3.40 -2.52 -3.24 -3.48 -2.96 -2.79 -3.73 -2.2
nitrofurantoin 67-20-9 -3.47 -1.36 -2.89 -3.42 -2.62 -2.82 -2.52 -3.09
parathion 56-38-2 -4.66 -3.93 -3.64 -4.13 -4.59 -4.06 -3.66 -4.31 -2.97
2,2′,4,5,5′-PCB 37680-73-2 -7.89 -6.61 -7.55 -7.21 -7.47 -7.66 -7.85 -7.57 -6.99
phenobarbital 50-06-6 -2.34 -2.33 -2.5 -2.97 -2.41 -2.36 -2.8 -2.89 -2.38
phenolphthalein 77-09-8 -2.9 -3.91 -4.16 -3.99 -4.61 -4.64 -4.62 -4.31 -4.52
phenytoin 57-41-0 -3.99 -3.09 -3.09 -3.4 -5.25 -2.9 -3.18 -3.52 -4.28
prostaglandin E2 363-24-6 -2.47 -2.87 -3.8 -3.29 -3.98 -3.07 -3.52 -1.93
testosterone 58-22-0 -4.09 -3.64 -4.49 -3.98 -4.62 -4.27 -4.52 -4.13 -4.02
theophylline 58-55-9 -1.39 -1.52 -0.73 -1.71 0.54 -1.21 -1.27 -0.69 -1.91

R2 0.85 0.81 0.93 0.78 0.82 0.85 0.91 0.86
SE 0.78 0.87 0.55 0.97 0.84 0.77 0.61 0.79
AAE 0.69 0.72 0.44 0.74 0.64 0.63 0.48 0.65

a Blank denotes missing predicted value.

Figure 3. ESOL predicted solubilities for 150 compounds from Jorgensen and Duffy.9
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profile here. The most obvious interpretation of its role seems
to be as a measure of flexibility, although it might also have
a weak relationship toTm. The rotatable bond count (RB)
seems to have an obvious relationship to the entropic
component of solubility. Another interesting point is the
complete lack of explicit H-bonding variables in the final
model. They did not contribute in a significant way to the
regression equation and other attempts to introduce them,
such as multiplying donor and acceptor counts, failed to
improve matters. The counts seem to be too crude to capture
the solute’s interactions either within the crystal or with the
solvent. An area that might offer scope for improvement
could be to include functional group specific correction
terms, something that might be addressed in a future studys
cursory analysis has not revealed any systematic trends in
errors.

ESOL seems to be a viable alternative to GSE for
predicting the solubility of pesticide/drug-like molecules. The
fact that it works so well is something of a surprise and begs
the question why. GSE divides the solubility prediction
problem into a liquid-liquid partition term and a solid-
liquid state change term. The three non-logP terms in the
ESOL equation could be acting in either or both of these
terms.

One possibility is that the additional parameters are acting
to improve the CLOGP estimate of logP, a plausible
explanation given the importance of the logP term in both
ESOL and GSE. I have tested this proposition using a set of
489 in-house compounds with measured logPs, solubilities,
and melting points. Using the measured logP values improves
both models, the effect being slightly more marked for ESOL
(AAE goes from 0.68 to 0.50 moving from CLOGP to
measured logP) than GSE (AAE goes from 0.87 to 0.73).
However, the difference in improvement is not large,
indicating that logP estimate enhancement is not the main
effect of the additional parameters.

Another possibility is that the combination of MWT, RB,
and AP are modelingTm, which would mean that the ESOL
equation essentially reduces to the GSE. Although I have

not been able to find a decent linear correlation between these
parameters andTm, there may be some more subtle relation-
ship at work. Flexible compounds often have relatively low
melting points due to poor crystal packing while highly
aromatic compounds can form dense crystals with high
melting points. Larger compounds also tend to have higher
melting points. These observations suggest that something
about Tm is being captured by these variables, perhaps
warranting further investigation.

The standard GSE makes an explicit conjecture that may
offer another way forwardsentropy of melting (∆Sm) is
assumed to be constant for all molecules (Walden’s rule31).
This means thatTm∆Sm (which models solid-liquid state
change in the GSE) reduces toTm. This assumption is known
to be good for small, rigid molecules, less so for larger, more
flexible molecules. Dannenfelser and Yalkowsky modeled
∆Sm

32 using molecular symmetry and flexibility as param-
eters. Since most drugs and agrochemicals lack any sym-
metry, their “molecular rotational symmetry number” would
equal 1 for vast majority of compounds in this study. In this
case the model reduces to a measure of molecular flexibility.
This seems consistent with the importance of AP and RB in
the ESOL equation, as both have a bearing on flexibility.

My conclusion is that the non-logP terms are probably
providing an enhanced estimate ofTm∆Sm rather than
accurately modeling the individual terms. I lacked the data
to model∆Sm, and, from the limited work in this study, it
appears that modelingTm in isolation is difficult.

In summary, ESOL provides a fast and robust method for
estimating the solubility of drugs and agrochemicals without
recourse to physical measurements.
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training data set, their measured and ESOL-predicted solu-
bilities, and their structures as SMILES.5 This material is
available free of charge via the Internet at http://pubs.acs.org.
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