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These are some some notes on the most simple approaches to solvation, in terms of classical

electrostatics. For some reason I have had trouble finding suitable sources of information on this
subject, perhaps because it is widely assumed to already be common knowledge by most authors.

Suggestions or mistakes sent to my email would be greatly appreciated.

1 Free energy of a charge distribution in a dielectric media

Consider a continuous charge distribution in a dielectric medium, producing a potential φ. Now
consider the work necessary to increase the charge density uniformly throughout the distribution
by δρ. Since the potential depends linearly on the charge density, the change in energy of the
system (ie. the work) to a small perturbation is :

δW =

∫
V

φ(r)δρdV (1)

In a dielectric, Gauss’s law is ∇ ·D = ρ. Therefore

δρ = ∇ · δD = ∇ · (φδD)− δD · ∇φ (2)

where we used the vector identity δ · (φA) = δφ(A) + φδ ·A. Therefore:

δW =

∫
V

∇ · (φδD)dV −
∫
V

δD · ∇φdV (3)

The divergence theorem says that the first integral is equal to a surface integral of the gradient. If
we expand the volume of integration to infinity then this integral must go to zero, as φ will fall at
least as fast as 1

r for any finite charge distribution. Therefore, only the second integral remains.
Substituting ∇φ = E we get:

δW =

∫
V

δD ·E (4)

At this stage we assume as linear dielectric, so δD = εδE. Then for mathematical transparency
we parametrize our increase in E by a parameter λ and note that δE = ∂E

∂λ δλ and E · δE =

E · ∂E∂λ δλ = 1
2
∂E2

∂λ δλ Then we integrate the resulting form from E = 0 to E = E to obtain:

W =
εε0
2

∫
V

E2dV (5)
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As is well known, E2

8π is the energy density of an electric field in free space. If ε has any
temperature dependence, then in general it is inaccurate to call eqn. 5 the change in energy of the
dielectric. The reason for this is that during the derivation we did not specify what thermodynamic
changes were happening in the dielectric medium while we were increasing the field or whether
we increased the field isothermally or adiabatically. The application of a field has thermodynamic
effects, for instance a change in temperature (the electrocaloric effect) or a change in volume
(electrostriction) which result in changes to the dielectric constant depending on ∂ε

∂T or ∂ε
∂P . Let’s

first consider the case where we keep the temperature constant during the application of the field,
which is the most common situation in experiments. The first law of thermodynamics says:

dU = dQ+ dW (6)

The second law says that if we make the changes in a reversible fashion, then dQ = TdS and

dU = TdS + dW

dW = dU − TdS
(7)

If we keep the system at constant volume and temperature, then this change in work is the change
in the Helmholtz free energy:

F = U − TS
dF = d(U − TS)|T,V = dU − TdS = dW

(8)

Thus assuming constant volume and temperature equation 5 is

∆F =
εε0
2

∫
V

E2dV (9)

Using S = − ∂F
∂T

∣∣
V,D

then we can easily derive the following equation for the entropy:

S = S0 +
ε0
2

∂ε

∂T

∫
V

E2dV (10)

We can also look at the internal energy U by substituting 10 into U = F + TS.

U = U0 +
ε0
2

(
ε+

(
∂ε

∂T

)
T

)∫
V

E2dV

= U0 +
ε0
2

(
∂(εT )

∂T

)∫
V

E2dV

(11)

Thus we see that equation 5 refers to the energy only when ε ∝ 1
T . This is the case for things like

dipolar gases, but usually liquids diverge significantly from this behaviour.
Now consider equation 10 for the entropy. In liquids ∂ε

∂T is negative, indicating that entropy
decreases when the field is applied. Since entropy is a measure of disorder, this means that the
field induces order. In some dipolar solids ∂ε

∂T is positive, indicating that an external field induces
disorder. A change in the slope of ε(T ) sometimes signals a phase change.1

2 The simplest model – Born electrostatics + cavity forma-
tion

In this section we review the simplest model of solvation, the Born model. Although it is highly
naive, the Born model is a natural reference point for more complicated models.

The free energy of solvation can be broken up as:

∆G = ∆Gelec + ∆GvdW + ∆Gcav (12)

1A notable exception is water, where the dielectric constant anomalously increases during the phase change from
liquid to water and then continues to increase with smaller T . This is due to the onset of a proton tunneling
contribution to the dielectric constant. In most substances the dielectric constant drops upon freezing and decreases
further as T is decreased.
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2.1 The Born model

We consider the solute particle to be a sphere of charge Z and radius a embedded in a medium of
dielectric constant ε.

The electric field produced by the charge at distances r > a is simply:

E =
Z

4πεε0

r

r3
(13)

To find the free energy we use equation 9 and integrate E2 from r = a to r =∞, yielding:

G =
Z2

8πεε0a
(14)

Notice how the energy of the system depends on the dielectric constant ε. We can compare the
energy of the solute in vacuum ε = 1 with energy in the solvent. This energy difference between
these two is the electrostatic contribution to the solvation free energy:

∆Gelec =
Z2

8πε0a

(
1

ε
− 1

)
(15)

That is all there is to the Born model. Note that the factor 1− 1
ε = χL appears in the equation.

2.2 Generalized Born

Previously we considered our solute to be spherical, which is a good approximation for single
atoms. When considering the solvation of molecules obviously we need to extend Born theory to
account for their non-spherical shape. The most obvious extension is to consider each atom in the
molecule as a sphere of radius ai and charge qi. The electrostatic energy of the molecule is changed
as:

∆Gelec =

N∑
i =1

kq2i
2ai

(
1

ε
− 1

)
+
∑
i, j ¿ i

kqiqj
2rij

(
1

ε
− 1

)
(16)

A common form for fGB is :

fGB(i, j) =

[
r2ij +RiRj exp

(
−r2ij

4RiRj

)]1/2
(17)

Here Ri are called the effective Born radii. The generalized Born approach is heavily used in
biophysics because of its computational ease. However, generalized Born theory typically overes-
timates solvation free energies.

3 Nonlocal Born theory

An attempt to improve Born theory is “non-local Born theory”. Nonlocal Born theory takes into
account nonlocality in the dielectric function of the solvent, which arrises because of correlations
between solvent molecules. We start with equation 9 for the free energy change due to charging in
a dielectric:

∆F =
εε0
2

∫
V

E2dV

=
1

2

∫
V

D ·EdV

=
1

2ε0

∫
V

ε0D
2 −D · P dV

(18)

The first term is the free energy of charging in a vaccum, while the second term represents the
additional free energy due to the dielectric. Therefore, the solvation free energy with respect to
the vacuum is:

∆Felec =
1

8π

∫
V

4πE2 + P ·EdV (19)
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Now assume we have a nonlocal dielectric:

P (r) =

∫
dke−ik·r

(
1− 1

ε(k)

)
D(k) (20)

For a spherical ion of charge q and radius a one obtains:

∆Felec =
−q2

4πε0

∫ ∞
0

dk
sin2 ka

(ka)2

(
1− 1

ε(k)

)
(21)

Literature results on nonlocal Born theory are mixed. It was shown that nonlocal Born theory
performs worse than Born theory.[1] The reason for this is that nonlocal Born theory does not
account for the rearrangement of solvent water molecules around the solute. The rearrangement of
molecules in the first shell is extremely important. Other authors have shown that nonlocal Born
theory can be made a bit more accurate than conventional Born theory by tuning the effective
radii.

3.1 The effective potential & screening function

For a given ε(k, 0) an effective potential can be derived such that :

E(r) = −∇VE(r)

E(k) = −ikVE(k)
(22)

We derive the expression by casting Gauss’s law into Fourier space:

∇ ·D(r) =ρ(r)

ik ·D(k) =ρ(k)

ik · ε0ε(k)E(k) =ρ(k)

ik · ε0ε(k)(−ikVE(k) =ρ(k)

(23)

VE(k) =
ρ(k)

ε0ε(k), 0)k2
(24)

Assuming isotropy one ends up with :

VE(r) =
1

2π2ε0r

∫ ∞
0

ρ(k) sin(kr)

ε(k)k
(25)

The screening factor is defined as:

S(r) =
ε(0)4πε0r

q
VE (26)

It is defined so that in a bulk medium S

VE(r) =

∫
d3k

(2π)3
e−ik·r

ρf(k)

ε0ε(k), 0)k2
(27)

4 Poisson-Boltzman equation

The Poisson-Boltzman (PB) equation was introduced by Gouy (1910) and Chapman (1913) and
later elaborated by Debye and Hückel (1923). (When PB theory is applied to things like planar
walls or cylinders, the term Gouy-Chapman theory is often used.) As it’s name suggests, it is a
combination of the Poisson equation for the electrostatic potential:

∇ · ε(r)∇φ(r) = − 1

ε0
ρ(r) (28)

and the Boltzmann equation for the local density of ions. For each species s we have

ns(r) =
Ns
V

exp

(
−qsφ(r)

kBT

)
(29)
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We now assume we have an equal number of positive and negative ions (with the same valency)
and substitute eqn. 29 into eqn. 28.

∇2φ =
qn0
εε0

[
exp

(
qφ

kT

)
− exp

(
− qφ
kT

)]
∇2φ =

qn0
εε0

sinh

(
qφ

kT

) (30)

The linearized Poisson-Boltzman equation can be obtained by expanding the hyperbolic sine
function in a Taylor series:

∇2φ(x) = k2φ(x)

k2 ≡ 2q2n0
εε0kT

(31)

k−1 is the Debye length. The solution of the liearized PB equation for the potential around a point
charge is:

φ(r) = A
e−kr

r
(32)

This screening function is the same as the Thomas-Fermi screening function for a free electron
gas derived in Solid State physics textbooks from a different (but closely related) chain of logic.
The longitudinal dielectric function is computed via

φ(k) =
e

q2εε(k)
(33)

ε(k) = 1 +
1

L2
Dq

2
(34)

χL =
1

1 + L2
Dq

2
(35)

here LD is the Debye screening length.
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