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In the following sections we present the model of J.C. Decius (1968)[2] which yields a formula
for the LO-TO splitting of k = 0 optical modes in dipolar crystals, and show how the splitting
relates to crystal geometry. The treatment is completely classical and quite simple, so this
is really a toy model (although it can reproduce experimental splittings for simple tetragonal
crystals). We assume our system is a system of point dipoles on a lattice. Each dipole has a
permanent dipole moment m and a polarizability α.

0.1 Energy of the dipolar crystal

An expression for the energy of a system of polarizable dipoles in an applied field was derived
by Mandel and Mazur in 1958.[5] Although we are interested in the case when the applied field
is zero, we perform the derivation with the applied field because the results are interesting. For
our case we assume the polarizability tensor α is isotropic. We assume we have an applied field
E0. In what follows we drop the bold notation on all of the vectors and matrices. We introduce
the following vectors: p ≡ (p1,p2, · · · ,pN ), a vector of length 3N , and E0 ≡ (E0,E0, · · ·EN ),
a vector of the applied electric field, also of length 3N . When a vector appears to the right of
a matrix it is understood to be a column vector, and when on the left, a row vector. We also
introduce the following matrices:

T ≡


0 T 12 T 13 · · ·
T 21 0 T 23 · · ·
T 31 T 32 0 · · ·

...
...

... 0

 α ≡


α 0 0 · · ·
0 α 0 · · ·
0 0 α · · ·
...

...
... α

 I ≡


1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
...

...
... 1

 (0.1)

Then the equation for the dipole moments is:

p = m+ α(E0 − Tp) (0.2)

This leads to
p+ αTp = m+ αE0

p = (I + αT )−1(m+ αE0)

p = (I + αT )−1m+ (I + αT )−1αE0

p = p0 +AE0

(0.3)

1



Where we define
p0 ≡ (I + αT )−1m (0.4)

A ≡ α(I + αT )−1 (0.5)

Since A is a diagonal matrix and T is a symmetric matrix, they commute with each other.
Mandel & Mazur employ a non-obvious identity:

(I + αT )−1 = I −AT = I −AT (0.6)

The validity of this equation can be easily checked. We now compute the local field, F :

F = E0 − Tp
= E0 − T (p0 +AE0) using eqn. 0.3

= (I − TA)E0 − Tp0 using eqns. 0.6 & 0.5

(0.7)

leading to:

F = α−1AE0 − Tp0 (0.8)

We are now in a position to compute the electrostatic part of the energy of the system. The
electrostatic energy is broken into three parts:

Vel = Vin + Vdip + VE0
(0.9)

here Vin is the “internal” energy of the polarization dipoles, Vdip is the the dipole-dipole inter-
action energy, and VE0

is the interaction energy of the system with the electric field.
The internal energy is:

Vint =
∑
j

pj∫
mj

Fj · dpj =
∑
j

α

Fj∫
0

Fj · dFj

=
1

2
α(E0 − Tp)2

=
1

2
α−1(AE0 − Tp0)2 Using 0.8

=
1

2
αp0T

2p0 − E0ATp0 +
1

2
α−1E0A

2E0

(0.10)

The dipole-dipole energy, Vdip = 1
2pTp is found to be:

Vdip =
1

2
p0Tp0 + p0TAE0 +

1

2
ATAE0 (0.11)

When one sums the internal energy and the dipole energy there is a cancellation of terms, leading
to:

Vint + Vdip =
1

2
mTp0 +

1

2
E0AE0 (0.12)

The energy due to interaction with the applied field is

VE0
= −pE0 (0.13)

When we sum up all three energy terms and do some simplification we get:

Vel =
1

2
mTp0 − p0E0 −

1

2
E0AE0 (0.14)

When the applied field E0 is zero, the energy of the system is:

V 0
el =

1

2
mTp0 =

1

2
mT (I + αT )−1m (0.15)
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0.2 The frequency shift

We now can compute the frequency shift of a dipolar molecule, that is, the shift when the
molecule is moved from the gas phase to the solid phase.[2] We are interested in the k = 0 case.
In this case all of the dipole moments are equal in magnitude and direction. As we will see, in
general the shift will be different depending whether the dipolar wave travels in the longitudinal
or transverse direction.

0.2.1 Single molecule per unit cell

As before, we store all of the dipole moments in a vector of length 3N µ = (µ1,µ2, · · ·µN , ) We
expand the dipole moment vector in terms of the unit cell normal coordinates:

µ = µ0 +
∑
k

Qk
∂µ

∂Qk
(0.16)

We now look for the term in the expansion of the potential energy 1
2mTp0 (eqn. 0.15) which is

quadratic with respect to the normal coordinates. This term is :

V =
1

2

∑
k

∂µ

∂Qk
T (I + αT )−1

∂µ

∂Qk
Q2

k (0.17)

The entire problem reduces to finding the energy given in eqn. 0.15. We use the index t to
label the lattice sites - in otherwords, it labels 3x3 blocks in the matrix T . The problem reduces
to calculating the sum: ∑

t′t′′

Ttt′(I + αT )−1t′t′′ (0.18)

Since all of the sites are identical, we only need to consider the sum over t′′ for fixed t′. Note
that we can perform a Taylor expansion:

(I + αT )−1 = I − αT + α2T 2 − α3T 3 · · · (0.19)

Thus we can write: ∑
t′′

(I + αT )−1t′t′′ = I3 − αS + α2S2 − α3S3 · · · (0.20)

Where we have defined the 3x3 matrix S:

S ≡
∑
t′′

Tt′t′′ (0.21)

0.2.2 Simple cubic lattice, shape dependence

In the case of a simple cubic lattice, it is well known that the the summation
∑

t′′ vanishes and
only depends on the shape of the boundary. One possible choice is to consider an infinite slab,
with the boundary consisting of two planes parallel to the x and y axes. This geometry allows
us to distinguish two types of phonons in the k = 0 limit : “longitudinal phonons” travel along
x and y and transverse phonons travel along z. Then one finds:[4]

S ≡ 4πn

3

−1 0 0
0 −1 0
0 0 2

 (0.22)

Where n is the ”number density” n = N/V = 1/v. For transverse phonons , the shift in the
energy is:

1

2
Sz(1 + αSz)

−1
(
∂µ

∂Qk

)
Q2

k = (4πn/3)(1− 4πnα/3)−1
(
∂µ

∂Qk

)2

Q2
k (0.23)
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For longitudinal phonons it is

1

2
Sx(1 + αSx)−1

(
∂µ

∂Qk

)
Q2

k = (8πn/3)(1 + 8πnα/3)−1
(
∂µ

∂Qk

)2

Q2
k (0.24)

The frequency shifts are:

ω2
T = ω2

0 − (4πn/3)(1− 4πnα/3)−1
(
∂µ

∂Qk

)2

ω2
L = ω2

0 + (8πn/3)(1 + 8πnα/3)−1
(
∂µ

∂Qk

)2
(0.25)

The frequency splitting is:

ω2
L − ω2

T =
4πn

3

(
2(1− 4πnα/3)−1 − (1 + 8πnα/3)−1

)( ∂µ

∂Qk

)2

(0.26)

In the case where the molecules have zero polarizability this formula simplifies to :

ω2
L − ω2

T =
4πn

3

(
∂µ

∂Qk

)2

(0.27)

This equation assumed the crystal has the shape of a plane (finite in the z direction and infinite
in the x and y directions). More generally, one can consider crystals that are ellipsoids. In that
case S takes the form:[3][4]

S ≡ 4πg

3v

−1 0 0
0 −1 0
0 0 2

 (0.28)

the formula is modified to:

ω2
L − ω2

T =
4πg

3v

(
∂µ

∂Qk

)2

(0.29)

Here g is a factor that depends on the ratio c/a. In the case of a spherical crystal (c/a = 1), g = 0
and the splitting disappears.[4][3] Ignoring the effects of polarizability simplifies the analysis by
removing the term (1 + αS)−1 ≡ B. The equation for the splitting becomes:

ω2
L − ω2

T =
4πn

3
(Szz − Sxx)

(
∂µ

∂Qk

)2

(0.30)

0.2.3 Non cubic simple lattices

We now consider non-cubic lattices, again with one dipole per unit cell. We assume the crystals
have a spherical shape, that is , we perform our sum in a spherical region and let L → 0. In
general the sum in this sphere will not be equal to zero as it would be in the case of a simple
cubic lattice. However, for certain symmetry groups, the matrix S will be diagonal. According
to Decius, these are the groups Cn with n > 3, Dn, Cnv, Cnh with n > 3 Dnh, Dnd and
Sn. For primitive tetragonal or hexagonal lattices, the appropriate sums have been evaluated
by Mueller (1935),[6] who reports the “Lorentz factors” Lx, Ly and Lz for simple tetragonal
lattices. Lorentz factors are defined by the equation:

Fi = E0i + 4πLiPi i = x, y, z (0.31)
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Where F is the local field and E0 is the applied field. This relation assumes that the dipole
moments are parallel to the applied field. Decius gives the relations between Lx, Ly and Lz and
Sxx, Syy and Szz. If k is parallel to z, then

Sxx = Syy = −4πnLx

Szz = −4πn(Lz − 1)
(0.32)

If k is perpendicular to z then
Sxx = −4πn(Lx − 1)

Syy = −4πnLy

Szz = −4πnLz

(0.33)

A method of efficiently calculating Lorentz factors (internal fields) using rapidly converging
sums for lattices of arbitrary symmetry is explained by de Wette and Schacher (1965).[1]

0.2.4 Extension to lattices with a basis

The above theory can be generalized to lattices with a basis - ie. with more than one dipole per
unit cell. To accommodate this we use the indices t, t′ and t′′ to label unit cells. Let us assume
m molecules per unit cell. Then A and T become 3mNx3mN , where N is now the number
of unit cells. The 3x3 polarizability matrix α becomes a 3mx3m polarizability matrix for the
entire cell. The 3x3 dipole interaction tensors T are replaced with 3mx3m tensors of the form:

T t′t′′ =


T 11 T 12 T 13 · · ·
T 21 T 22 T 23 · · ·
T 31 T 32 T 33 · · ·

...
...

... Tmm


t′,t′′

(0.34)

where (T ij)t′t′′ gives the interaction between a molecule of type i in unit cell t′ with a molecule
of type j in unit cell t′′. The S matrix likewise becomes 3mx3m and takes the form:

St′t′′ =


S11 S12 S13 · · ·
S21 S22 S23 · · ·
S31 S32 S33 · · ·

...
...

... Smm


t′,t′′

(0.35)

If the symmetry class of the crystal falls into one of the classes mentioned in section 0.2.3, then
each of the submatrices Sij will be diagonal.
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