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We measured the Hall resistance of GaAs to be -1455 ± 53.8 at 300K and 2331 ± 139 at 77K. We measured
the sheet resistance of our GaAs / AlGaAs heterostructure to be R2 = 2070Ω± 164Ω at 300K...

I. OVERVIEW

The various layers of our sample are show in figure
I. The first layer (from the bottom) is a one micron
layer of epitaxially grown GaAs. Next there is an un-
doped layer of GaAlAs which serves as a spacer between
the undoped GaAs below and the silicon doped GaAlAs
layer above. The silicon dopant significantly lowers the
conduction band energy. As can be seen in the energy
diagram in figure I, the conduction band passes below
the Fermi level (a phenomina known as inversion) in a
small region between layers, where a 2 dimensional elec-
tron gas (2D EG) can form. The spacer between the
undoped GaAs and the doped GaAlAs prevents the scat-
tering of carriers from dopant atoms; a technique called
“modulation doping”. Topping off the heterostructure is
a 10nm GaAs “cap” layer which protects and isolates the
layers below.

The relevant physics of the Hall effect are reviewed in
the appendix. The Hall resistance is defined through the
following relation in two dimensions:

VH = IRHB (1)

If we assume only one type of carrier, the mobility can

FIG. 1. Expitaxally grown layers of our sample (not to scale).
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FIG. 2. Microscope image of the sample. The metal contacts
appear lighter and have thin gold wires attached to them.

be calculated using the equation

µH =
RH
R2

(2)

We use the subscript H to denote that this is the Hall
mobility. In many cases the Hall mobility, as calculated
here, is not equal to the true mobility of the electrons.
The Hall coefficient often has to be divided by a quan-
tity called the “Hall factor”, which we assumed to be
one (a good assumption for degenerate intrinsic semicon-
ductors and if B is small enough that second order ef-
fects are negligible). The Hall factor can be significantly
different than one if there the material is highly non-
degenerate (ie. at high temperature) and/or if there are
major sources of scattering, such as ionized impurities.2

For bulk (3D) GaAs, the Hall factor is around 1.05 at
77K and around 1.15 at 300K.3

The relaxation time, denoted τ the average time be-
tween collisions for a given electron. It can be calculated
using the equation:

τ =
m∗µ

e
(3)
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II. PRELIMINARY MEASUREMENTS

By noting the direction of current flow, the orientation
of the sample with the respect to the magnetic field, and
the sign of the Hall voltage, we determined (using the
right hand rule) that the dominant carriers in GaAs are
negative (electrons). We determined the sheet resistance
the parameter γ = l/w (= 5.11 ± .027 for adjacent con-
tacts) by measuring l and w using the number of pixels
in the picture shown in figure I. During the course of
our measurements we measured the voltage between the
pairs 6-7, 6-8, and 7-8 at 300K and 77K at fixed current
and zero magnetic field. These measurements gave three
different values for the sheet resistance at each temeper-
ature, which were averaged to give R2 = 2070 ± 164.7Ω
at 300K and R2 = 136.26± 7.87Ω at 77K.

III. MEASUREMENT OF RH , n, µp AND µn

The semiconductor we are studying is an intrinsic semi-
conductor (does not contain a dopant) which is known to
have both electrons and holes. The Hall coefficient is (see
appendix):

RH =
1

ne

µp − µn
µp + µn

(4)

The formula for the magnetoresistance is:

ρ = ρ(0)(1 + µeµpB
2) (5)

In our experiment we are able to measure RH , ρ(0)
and the coefficient A = ρ(0)µnµp. In equation 4, n
is the total carrier concentration : n = np + nn. For
an instrinsic semiconductor such as GaAs we know that
np = ne = n/2, but it is not necessarily the case that
µp = µn, which would imply zero Hall voltage. Equa-
tion 4 and equation 5) give us two equation for three un-
knowns (n, µn, µp). To reduce the number of unknowns
one can use the defining formula, µ = vd

E to get 1/(en)
in terms of µn and µp:

j = nev = n(eµp + eµn)

= neE(µp + µn)
(6)

(Here most authors would put a negative sign would go in
front of the term eµp, but we chose to let it be absorbed
into µp).

1

ne
= ρ(0)(µp + µn) (7)

Plugging this into equation 4 leaves us with two equations
for two unknowns:

A = ρ(0)µnµp

Rh = ρ(0)(µp − µn)
(8)

FIG. 3. Best magnetoresistance data we took at 300K.

Solving these equations yields

µp =
RH ±

√
R2
H + 2Aρ(0)

2ρ(0)

µn =
A

2ρ(0)µp

(9)

In our experiment we did not directly measure ρ vs B,
what we measured was the voltage along the length l vs
B. Using Ohm’s law E = jρ, the relation for the 2D
current density j = I/w, and the relation V = El, we
get the equation:

V =
Iρl

w
= Iργ (10)

Thus, the coefficient we measured from our fit, which
can be denoted by C, is related to A by C = IAγ → A =
C/(γI). The magnetoresistance data we used is shown in
figure III for 300K and in figure ?? for 77K. At 300K the
fit had a χ2 = 6.86 corresponding to a p-value of p = .33,
and at 77K the fit had a χ2 = corresponding to a p-value
of p =. At 77K two fits were used, shown in figures III
and III, which had χ2 values of 8.14 (p = .228) and 0.887
(p = .98) respectively. The results for A were averaged
between the two fits. The poor χ2’s show that these
fits were not good, for reasons we will speculate on in the
section on errors. The fits also allowed for the calculation
of R2 by looking at the y-intercept of the graph. R2

was found to be 2068 ± 0.22Ω at 300K (the error was
calculated by looking at the change necessary to change
χ2 by 1). Despite the (apparently) small error, I choose
to use the value of 2070Ω and associated error described
before, because the overall the magnetoresistance data
was of poor quality and the fits were not good, neither
in visual apperence or p-value.

Our fits for RH are shown in figure III. When tak-
ing our data we ran into an issue of a hysteresis effect,
resulting different y-intercepts as B = 0 is approached
from different directions. To help compensate for this,
we took our data by alternating B between each point
taken, which averages over the hysteresis effect and also
prevents the buildup of a large “ferroelectric” voltage /
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FIG. 4. Data from 6-7 at 77K

FIG. 5. Data from 6-8 at 77K

large hysteresis. However we could not completely re-
move the hysteresis, so the points near B = 0 were not in-
cluded in the fits. In all cases, two fits were done, one for
postive and one for negative values of B. These fits were
done using the method of linear regression (least squares)
to get the slope and y-intercept. Linear regression was
used because it is an analytic technique, and does re-
quire a searching of parameter space like χ2. Searching
parameter space often leads to solutions which are only
local minima and is more time consuming because usu-
ally many initial values need to be tried to get ensure an
accurate fit. It is also much easier to calculate the error
in the parameters from a linear regression, as exact equa-
tions are available.1 For each fit the R2 value (described
in the appendix) is reported on the graph, showing that
all the fits were very good.

At 300K we found RH = −1455 ± 53.8 m3/C. If we
naivly assume one type of carrier and plug into the
formula RH = 1/(ne) this yields a carrier concentra-
tion of 4.296 × 109 ± 1.588 × 108)cm−3 wchich is about
1000 times greater than the carrier concentration of bulk
GaAs, but close to the carrier concentration of bulk sili-
con (1.45x1010cm−35).

The results for carrier concentration and mobility and
other microscopic parameters are summarized in the fol-
lowing table:

300K 77K Units

R2 2070 ±164.7 136.3±7.8 Ω

RH -1455±53.8 -2331±139 m3/C

µn .7027 34.22 m2/(V s)

µp .0639 0.0129 m2/(V s)

n 3.94×109 2.680×109 cm−3

τn .267 13.0 ps

τp .123 .025 ps

Vfe 1.923 ×105 2.43×105 m/s

εf .013 .00919 eV

le 72.81 2925 nm

λDb 39.991 48.477 nm

Our value for µn at 300L is within error of the accepted
value .85 m2/(Vs). The accepted value for µp at 300K is
.04 m2/(Vs). Again one sees that the carrier concentra-
tion is a factor of 1000 larger than in bulk (3D) GaAs,
suggesting a possible error in converting units, however
the larger carrier concentration makes sense considering
that there is an inversion layer in our sample.

The relaxation constant τ was calculated using the for-
mula:

τ =
m∗µ

e
(11)

where we used effective masses derived from band theory
for bulk GaAs of m∗e = .067me and m∗p = .34me.

4

The cyclotron orbit can be estimated using the for-
mula:

rc =
γm∗vf
eB

(12)

Assuming a field of 150mT (the highest we used), and
using the calculated Fermi velocities this yields

rc = 690.7 nm at 300K

rc = 567.9 nm at 77K
(13)

Thus we see that an electron would not be able to
complete a cyclotron orbit at 300K or at 77K (c = πr2c =
1, 009, 986nm) with a 150mT field.

We can also compare l to the lattice constant for GaAs
at 300K, which is is .565nm.5

A. Discussion of change with temperature

At room temperature, intrinsic semiconductors are
usually non-degenerate. This means that εc − εf > 3kT .
If a semiconductor becomes degenerate, then many elec-
trons will be in the conduction band and it will begin to
behave more like a conductor. When a material is non-
degenerate, it is good to use the following formula for
vavg:

2

vavg =

(
8kT

πm∗e

)1/2

= 4.12 = 5× 105m/s at 300K

(14)
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FIG. 6. All of the data & fits we used to determine RH at 300K and 77K.

Our sample was probably degenerate in the inversion
layer, but otherwise non-degerate.

The carrier density as a function of temperature is well
described by the equation

n = Ne−(εf−εc)/(kT ) (15)

The temperature dependece of the mobility depends on
many factors. If the sample is pure, then lattice scatter-
ing by longitudinal acoustic (LA) phonons will dominate.

This leads to a temperature dependence of µ ∝ T−3/2.2

(More discussion should go here)

B. Constant B, varying I measurement of RH

We also measured RH by fixing the magnetic field at
187mT (the highest we could achieve) and then varying
the current between 1 − 10µA. The results are shown
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FIG. 7. Data taken with B = 187mT

in figure III B. We found RH = 1532.2pm6.869 m3/C,
which is not consistant with our previous value. The
reason for the inconsistancy is not known, but suggests
a systematic error either in the experiment or the calcu-
lation.

IV. SOURCES OF ERROR

A. Geometrical errors

There are several sources of error with regards to the
geometry. The length to width ratio was measured on
a computer using a microscope photo of the sample to
minimize measurement error, but still a small amount of
error was incured. Another possible source of error is
from geometric offset of the fingers used to measure the
Hall voltage. Geometrical offset results in an additional
voltage scales with the current and is present even with
non-zero magnetic field. It is apparent as the non-zero
y-intercepts in fig III, and can be easily be avoided by
always dealing with the slope.

B. Thermal effects

Thermal emf is due to “pyroelectricity” – the cre-
ation of a voltage gradient due to a temperature gra-
dient. Thermal emf can be compensated for by reversing
the current – the voltage across the sample reverses di-
rection, but the thermal emf does not. By making two
measurements taken with the current going in opposite
directions and then subtracting them, one can cancel out
the thermal emf : [(V + Vemf ) − (−V + Vemf )]/2 = V .
An additional possible source of error was due to the fact
that the temperature of our sample was constantly chang-
ing as Joule heat begins to dissipate when the current is
turned on. In semiconductors, the resistivity decreases

with temperature. We found that it took a very long
time (≈ 5 mins) for the sample temperature to equilibri-
ate (as seen by the decreasing voltages). Then, when the
current was removed, the sample would cool down very
quickly. Even in “equilibrium” the voltage would con-
tinue to fluctuate on the order of .01mV. For this reason,
we choose to make our measurements very quickly and
only allow current to flow for very short times. We tried
to do this as consistantly as possible, but estimated that
our precision was limited to ≈ .01mV.

C. Sample positioning

The positioning of the sample was important as the
sample should be perpendicular to the magnetic field.
We aligned the sample as best we could but estimated
that the sample still had an inclination of about 2 ◦. We
can correct for this by multiplying our measured value of
magnetic field by cos(2 ◦) = 0.9994. The error in estimat-
ing the angle is negligible compared to the instrumental
error in B (.1 mT).

D. Internal resistance of the voltmeter

Most voltmeters (whith the exception of balancing
potentiometers), such as the Agilent 34401A multime-
ters we utilized, have a small amount of current flow-
ing through them. Starting with a total input current
I, we write I = Iv + Ix where Iv is the current flow-
ing through the voltmeter and Ix is the current flow-
ing through the sample. We know IvRv = IxRx and
that Iv = IxRx

Rv
≈ IRx

Rv
= V

Rv
. The voltmeter works by

measuring Iv and then infering V . This scheme works
well, but can be jepordized if the contact resistances are
large, because they will effect the current flow through
the voltmeter. In that case, Iv(Rv + 2Rcont) = IxRx
so we get Iv ≈ IRx

Rv+2Rcont
. One easy way to correct for

this would be to figure out Rcont. However contact re-
sistances are hard to characterize. Making low-resistance
contacts onto semiconductors is a challenging engineering
problem. Contacts are often non-ohmic, which further
complicates their characterization, because then their re-
sistance depends on current in a non-linear way.
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Appendix A: Background physics

1. Drude model

The Drude model is a simple model of conductivity
which assumes that carriers travel for an average time
τ before being scattered. Since scattering is assumed to
be equally likely in every direction, on average an elec-
tron’s velocity is reset to zero after scattering. We take
the average velocity (known as the “drift velocity”) in an
electric field to be vd = (1/2)aτ = (eEτ)/(2m∗). How-
ever, it turns out that we made a mistake here, which is
actually very similiar to a mistake that Drude made in
his orginal paper. The relaxation time, τ is defined to be
the average time between collisions, for a given electron,
chosen randomly. It turns out that, quite counter intu-
itively for those who have not done the calculation, this
is different then the average time between collisions av-
eraged over a collection of N electrons, a quantity called
the “ensemble average”. It turns out that the ensemble
average is equal to 2τ . To see this, we start by noting
that the probability of a collision in a small interval of
time is Pc(dt) = dt/τ . The probability of no collisions in
a time interval t, denoted as Pnc(t) can be calculated by
breaking up t into N small time intervals t = Nδt:

Pnc(t) = (1− Pc(δt))N =

(
1− t

Nτ

)N
= e−

t
τ (A1)

where we have implictely taken the limit as δt→ 0, N →
∞. The function Pnc is known as a “cummulative prob-
ability function”. A probability density function, giving
the probability of a collision at any time t (after a colli-
sion at t=0) can be found by taking the derivative of this
function.

PDc =
d

dt
(1− e− t

τ ) =
1

τ
e−

t
τ (A2)

The interpretation of this function is as follows: if we pick
N electrons at random, there is a probability PDc(t)dt
of finding an electron who’s last collision was between t
and t + dt ago. The average time until the last collision
is given by:

〈t〉 =

∫ ∞
0

t
1

τ
e−

t
τ dt = τ (A3)

An identical calculation tells us that the average time
until the next collision, for a randomly chosen electron,
is also τ . Thus, the average time between collisions, T for
a randomly chosen electron, is 2τ . This can be confirmed
by looking at the probability distribution for T . This is
confusing because, if we focus on a particular electron, we
can calculate the probability there is no collision between
[0, t] and then a collision at t + dt as e−

t
τ × dt/τ . The

average over all possible times tells us, that for a given
electron, the average time between collisions is τ . This
average (which can be called “time average”) is different
than the ensemble average by a factor of 2.

It turns out that this factor of 2 is going to cancel
out the factor of 1/2 in the equation for vd. Thus, if
one neglects the factor of 1/2 and the factor of 2, one
still obtains the correct result, albeit through incorrect
means. Indeed, this is excatly what one sees in many
popular textbooks, with the above details ommited.

The current density is defined as j = nevd, so we obtain

j =
e2nτE

m∗
≡ E

ρ
(A4)

Where ρ is the resistivity: ρ = m∗/(e2nτ), which is re-
lated to the resistance by the equation ρ = (Rwδ)/L, or
in the case of a 2D material, ρ = (Rw)/L ≡ Rγ. The
mobility is defined as:

µ ≡ vd
E

=
eτ

m∗
(A5)

2. Hall effect

When both an electric and magnetic field are present,
the carriers in the material will experience a force F =
e(E+v×B). We assume both fields are constant in space
and time, and that the magnetic field is perpendicular to
the current. The correct expression for the Hall voltage
can be derived through a simple physical argument. We
note that the magnetic force will cause charge to build up
along the edge of the sample, until compensated by the
resulting electric field. In other words, in equilibrium:

eEy = evdB (A6)

Thus,

VH = Eyw = vdBw (A7)

Now we multiple both sides by neδ and use j = nevd to
obtain the correct expression.

VH =
jBwδ

neδ
(A8)

We now use the relation I = jwδ and note that the “Hall
resistance” is defined to be RH ≡ 1/ne, so we obtain the
conventional formula:

VH =
IRHB

δ
(A9)

In two dimentions, the above derivations for the resistiv-
ity and mobility are all the same, except that n is mea-
sured in charges / m2 and current density is measured
in A/m. We prefer to express things in terms of what is
called the “resistance per square” or “sheet resistance”
(where one assumes a square sample, ie. l = w):

R2 ≡
m∗

e2nτ
(A10)

To avoid confusion, it would probably be better to call
R2 the “sheet resistivity” since this is the same as the
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conventional equation for (3D) resistivity, but the term
“sheet resistance” is the one in use. Ohm’s law in 2D is

j =
E

R2

=
I

w
(A11)

If we then assume that E is along the length l we can
convert this to the more conventional form by multiplying
both sides by l,

lI

w
=

V

R2

V = IR2

l

w
= IR

(A12)

Thus it is clear that R2 can be calculated by dividing
the measured value of R by l/w ≡ γ:

R2 = R/γ (A13)

The derivation of the Hall voltage is only slightly dif-
ferent, resulting the same expression as eqn. A9 but with
no δ:

VH = IRHB (A14)

To find the mobility, (assuming one type of carrier)
in summary we have the following two easily derivable
relations:

µ = RH/ρ (3D)

µ = RH/R2 (2D)
(A15)

One should distinguish between 2D mobility and 3D mo-
bility, but here we did not, assuming the type would be
clear from context.

3. Magnetoresistance formulae

So far we have been considering the Hall effect in met-
als, where all of the carriers are electrons. In semiconduc-
tors, there can also be holes. In impurity free (“intrin-
sic”) semiconductors, the number of electrons will equal
the number of holes. In the special case when the elec-
trons and holes have equal concentrations and equal mo-
bilties, then the electrons will travel in one direction, and
the holes will travel in the other. They will both move
in the same direction under the application of a mag-
netic field, and therefore there will be no Hall voltage.
However, there can still be magnetoresistance. The cor-
rect equations can be derived by repeating the derivation
with two types of carriers and setting jy = 0 instead of
vy = 0. The derivation involves a large degree of manip-
ulation however to correctly factor out ρ.

ρ = ρ(0)(1 + µeµpB
2)

RH =
µp − µn

ne(µp + µn)

(A16)

Appendix B: Derivation of the Fermi energy & Fermi
velocity for a 2D electron gas

The derivation of the Fermi energy for a 2D electron
gas of density n goes as follows: We need to solve the
Schödinger equation in 2D, in a square sample of area
A = L2. After finding the energy levels, we find will find
the density of states, a quantity which will be the same
as L goes to infinity. The Schödinger equation is a wave
equation:

− h̄2

2m

(
∂2

∂x2
+

∂2

∂y2

)
ψ = εψ (B1)

The solutions in free space are plane waves:

ψ~k =
1√
V
ei
~k·~r (B2)

We apply periodic boundary conditions (ψ~k(~r) = ψ~k(~r±
Lx̂±Lŷ) since they permit more physically realistic run-
ning waves instead of the standing waves we would get
if we set ψ = 0 along the edges of our square (incidently
either choice will lead to the same result, however). Thus
only certain values for kx and ky are allowed:

kx =
2πnx
L

, ky =
2πny
L

(B3)

The area per point in k-space is clearly seen to be
(
2π
L

)2
.

As we extend L to infinity, the number of points in k-
space per unit area becomes the inverse of this quantity

A2

4π2
(B4)

Now one begines to imagine filling up these levels with
two electrons in each level. The area of the “Fermi
sphere” is defined to be πk2f . Now we imagine having
N electrons in our box. The number of electrons in the

Fermi sphere is N =
k2fL

2

2π . Now the number density can
be related to the Fermi wave-vector:

ne =
N

L2
=
k2f
2π

kf =
√

2πne

(B5)

The Fermi velocity is defined as vf ≡ h̄kf/m∗:

vf =
h̄
√

2πne
m∗

(B6)

The Fermi energy is simply (h̄2k2f )/2m∗:

εf =
h̄2πne
m∗

(B7)
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Appendix C: Linear regression formulae and R2

The R2 value is the square of the Pearson product
moment correlation coefficient, which is defined as

R =
n
∑
XY − (

∑
X)(

∑
Y )√

[n
∑
X2 − (

∑
X)2] [n

∑
Y 2 − (

∑
Y )2]

(C1)

R varies between -1 and 1 with 1 signifying perfect cor-
relation, -1 perfect anti-correlation and 0 no correlation.
R2 is refered to as the “coefficient of determination” in

some literature and varies between 0 and 1.
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