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We studied the hyperfine levels of Rubidium using the technique of optical pumping. Using the equation
ν0 = gJµ0

h(2I+1)B for Rb-87 we found gF = 0.5177 ± .0002 and Bearth = 0.416 ± .0002. For Rb-85 we found

gF = 0.342± .0001 and Bearth = 0.421± .002. We also looked for evidence of power broadening and compared
our lineshapes to Guassian, Lorentzian and Voigt profiles.

The technique of optical pumping which we used was
discovered in a series of work by Alfred Kastler in the
1940s, for which he would win the entire Nobel Prize in
Physics in 1966. Optical pumping allows one to overcome
several difficulties associated with measuring transitions
between hyperfine levels in a magnetic field. The first
difficulty is that in thermal equilibrium the populations
of electrons in two adjacent hyperfine levels are nearly
identical. One can calculate the fractional difference be-
tween levels using the Boltzmann formula. Assuming a
splitting of 1Mhz at room temperature:

nb
na

= exp

(
−Eb − Ea

kT

)
= 1− 2× 10−7 (1)

Thus, it is impossible to measure absorption between
these levels, because the processes of emmission and ab-
sorption would cancel each other out. Another problem
is that the intrinsic decay lifetime for transitions between
adjacent states is extremely long – on the order of mil-
lions of years. Finally, even if such photons were emitted,
they would have frequencies on the order of a few MHz,
for which no efficient quantum detector exists.

Optical pumping overcomes these limitations by
“pumping” electrons into the highest Zeeman sublevel.
To understand how it works, one should be familiar with
the origin of the Zeeman levels, a description of which is
included in Appendix 1. The important formula is the
one for the splitting between Zeeman levels in a weak
field:

ν0 =
gJµ0

h(2I + 1)
B (2)

The first-order transitions between adjacent Zeeman lev-
els are magnetic dipole transitions, for which the selection
rules are

∆l = ±1 ∆j = ±1 ∆m = {−1, 0, 1} (3)

In particular, right-handed circularily polarized light will
induce ∆m = +1 transitions and left-handed circular-
ily polarized light will induce ∆m = +1 transitions. If
one only uses right-handed light, (and sends this light
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in parallel to the applied magnetic field) then all of the
electrons will be pumped to the highest mF state. Then
downward transitions between levels can be induced with
an RF field and subsequent absorption of the pumping
signal can be observed.

I. EXPERIMENTAL TECHNIQUE

Figure 0 (lost) shows an schematic layout of our ap-
paratus and the equipment that we used. A rubidium
lamp provides the pumping light, which is sent through
a linear polarizer, a 1/4-wave plate and a filter to isolate
the D1 line. This light passes through the Rb sample cell
and the transmitted light is detected by a photodiode.
A set of Maxwell coils provides the applied B field while
a set of Helmholtz coils are used to induce the magnetic
resonance transitions.

II. CALCULATION OF Bearth AND gF

The Maxwell coil configuration consists of three coaxial
coils: a large central coil “A” with two smaller adjacent
coils B and C. Assuming the coils are infinitely thin, the
magnetic field due to the Maxwell coil on its axis is:

|Bcoil|
I

=

(
µ0NB
2RB

+
µ0NA,CR

2
A,C

(x2 +R2
A,C)3/2

)
= .000421[T/A]

(4)
with an error

∆Bcoil =
√

5.6× 10−43I2 + 4.43× 10−16 (5)

For instance, for a current of 1A the error in calculating
Bcoil turns out to be .00021 gauss. A more precise cal-
culation takes into account the non-zero thickness of the
wires, resulting in the formula

|Bcoil| = .000402I (6)

Using the weak field equation we can relate the mag-
netic field of the coil to the splitting’s resonance fre-
quency:

Bcoil =
hf

µBgF
−Bearth (7)
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FIG. 1. Resonance frequency vs. magnetic field for Rb-85
and Rb-87

This expression was fit to data we took at currents be-
tween 0 and 50 mA (see Figure II). For Rb-87 we found
gF = 0.5177 ± .0002 and Bearth = 0.416 ± .0002, with a
χ2/DOF of 6.65. For Rb-85 we found gF = 0.342± .0001
and Bearth = 0.421 ± .002 with a χ2/DOF of 8.05. Nei-
ther of these fits were good, with chance probabilites
of p < .15 and p < .075 respectively. These poor fits
are probably due to the relatively small number of data
points (6) that we used. More data should have been
taken in the low-field regime. When data from higher
currents (250mA - 2000mA) was included, the quality
of the fit decreased. The accepted values for gF for
J = 1/2, L = 0 are .3340 for Rb-85 and .50174 for Rb-
87. Neither of our measurements lie within our error bars
suggesting a source of systematic error in the experiment.
In particular, it was noticed that the calculation is very
sensitive to the magnetic field to current relationship –
hence the importance taking into account the finite vol-
ume of the wires. Things we did not take into account
were the finite size of the Rb-vapor cell or the magnetic
fields due to the lead in wires.

According to the NOAA website, the average magni-
tude of the Earth’s magnetic field at our lattitude and

longitude is .523 G. However, it is likely that the field
was shielded by the building and/or distorted by local
objects in the room, so we consider the field we measured
(average Bearth = .419± .001) to be reasonable.

III. OBSERVATIONS AT HIGHER FIELDS

Figure III shows some of the absorption lines we ob-
served at higher magnetic fields. Unfortunately, only
the highest-m lines are most visable, since the rf-induced
downward transitions are counteracted by the pumping
light. Lowering the pumping light intensity could have
solved that problem, at the cost of smaller amplitude
peaks. In Rb-87 we noticed small peaks which are due
to multiphonon transitions (see the two subfigures in the
top right of Figure III). During a 2-photon absorption
process, an electron can change it’s angular momentum
state by l = +2, 0, or−2. The 2-phtonon absoprtion lines
are shifted because of the non-linear spacing between the
mF levels.

IV. LINESHAPE BROADENING

There are many factors which contribute to the shape
and width of a spectral line. Here we were intrested in the
power broadening effect, which can be derived within the
context of a two state quantum system. Ignoring other
effects apart from the intrinsic “lifetime broadening” and
power broadening one finds that the shape of an absorp-
tion line is given by (Milloni 217):

N2(t =∞)

N
=

χ2β/2A21

∆2 + β2 + χ2β2/A21
(8)

where χ is the Rabi frequency and ∆ = ω21−ω. Since χ
is proportional to |E|, χ2 is proportional to the intensity
of the light.

Unfortunately, in our setup there was also significant
pressure broadening. Our Rubidium vapor cell also con-
tains Argon at 50 torr (.07 atm / 6700 Pa), which is used
as a buffer gas to prevent collisions between the Rb and
the walls of the container. The rate of coillisions in a
ideal gas with P = 50 torr and T = 42 ◦C is (Milonni
p96)

β =
1

τ
= 2.69× 108

P (Torr)

T
= 414MHz (9)

This rate is very high – much higher than the typical ab-
sorption frequencies, yet such collisions will chiefly effect
electric dipole transitions, and not the magnetic dipole
transitions we looked at. We did not attempt an analysis
of the effect of collisions on magnetic dipole transitions,
but based on this high rate of collisions, it seems likely
collision broadening may play some role.

There is also Doppler broadening, which results in a
Gaussian lineshape. The FWHM of this lineshape (at
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FIG. 2. Absorption lines at a variety of magnetic field strengths. The circles show the prediced placement of the lines calculated
using the Breit-Rabi formula. Black circles are for F = I + 1/2 and the grey circles are for F = I − 1/2. In each case, the
predicted values were shifted so that the first prediction lines up with the first line, to compensate for variations in the
background magnetic field.
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FIG. 3. Plot of the Breit-Rabi equation, showing the rearrangement of the lines at high fields. The magnetic fields we produced
were all < .001T .

T = 42 ◦C) is

δνD =
4

λ0

(
2 ln(2)kT

m

)1/2

= 2.73Hz (10)

which is clearly much smaller. Power broadening only
becomes greater than lifetime broadening in the optical
frequencies.

To look for power broadening, we measured the Rb-8
line with zero applied field for 7 power levels ranging from
.001mW to 1mW. The power consumed by the Helmholtz
coils was calculated using the equation

P =
V 2

Z
=

V 2

√
ωL2 +R2

(11)

where the impedance of the Helmholtz pair was estimated
to be approximately .5Ω and R was measured to be 1.5Ω.

These lineshapes were fit to a (weighted) linear sum of
a Gaussian and a Lorentzian. The FWHM of both were
calculated to see if any evidence of broadening could be
determined, the results of which are shown in Figure 4.
The values for χ2/DOF for these fits varied between .8
and .2, corresponding to p < and p <. As expected,
the FWHM of the Gaussian is smaller, but there is no
evidance of power broadening. (Note, the magnitude of
these FWHM numbers should not be taken too literally,

FIG. 4. Search for power broadening.

as there were also scale factors (“weights”) which were
not included)

As we calculated before, the Doppler broadening thus
is very small. However, we found that our lineshapes
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FIG. 5.

are better characterized by a Gaussian lineshape alone
than a Lorentzian. This suggests there is another form
of inhomogeneous broadening present, ie. broadening
which, like Doppler broadening, results in otherwise iden-
tical atoms having different resonance frequencies (For
instance, small fluctuations / spatial variations in the
magnetic field).

Taking into account both pressure broadening and
Doppler/inhomogenous broadening involves doing a con-
volution of both the Guassian and Lorentzian lineshapes.
The result is the “Voigt Profile” which (after extensive
manipulations) can be expressed in terms of the complex
error function and the afforementioned FWHM’s as

S(ν) =
.939

δνD
<{erfc(x+ ib)}

x ≡ 3.34
ν0 − ν
δνD

b ≡ 3.34
δν0
δνD

(12)

A MATLAB program was used to try to fit the line-
shape to the Voigt profile. Then, the FWHM of the Voigt
profile can be calculated within two percent in terms of
the FWHM’s (f’s) of the Lorentz and Gaussian compo-
nents as: (Olivero, pg 233)

fV ≈ 0.5346fL +
√

0.2166f2L + f2G (13)

or by numerical means. An example fit is shown in
Figure 5.
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Appendix A: Hyperfine structure & Zeeman splitting

The first contribution to the splitting of a given energy
level is the fine structure which is due to coupling of the

electron’s spin with the magnetic field it sees from its
motion around the proton. The good quantum number
becomes J = L+ S.

The hyperfine structure is due to coupling of the elec-
tron’s spin with the magnetic moment of the nucleus.
The primary correction comes from the dipole moment
of the nucleus, which is due to both the intrinsic spin an-
gular momentum of the protons and neutrons and their
orbital angular momentum within the nucleus. In CGS
units it is defined as:

~µN ≡ −gI
e

2mpc
~I (A1)

Here I is the total spin of the nucleus and gI is the nuclear
g-factor, which is very difficult to calculate, but can be
found experimentally. The shift in energy is ∆E = − ~mu·
~H(0), where ~H(0) is the magnetic field at the nucleous.

The direction of ~H(0) is the same as the total angular
momentum of the electrons, so

∆E =

(
µNH(0)

|I||J |

)
~I · ~J (A2)

The total angular momentum is ~F = ~J + ~I, and the
good quantum number becomes F = J + I, which can
take integer or half-integer values |J − I| ≤ F ≤ |J + I|.
The Zeeman splitting is a splitting of these otherwise
degenerate mF levels. The Hamiltonian which includes
both the hyperfine and Zeeman interactions is

H = hA~I · ~J − µB(gJ ~J +I
~I) · ~B (A3)

For J = 1/2 this Hamiltonian can be solved exactly,
resulting in the Breit-Rabi equation:

∆EF=I±1/2 =
−hA

2(2I + 1)
+ µgImFB ±

hA

2

√
1 +

2mFx

I + 1/2
+ x2

x ≡ µBB(gJ − gI)
hA

(A4)
where x is referred to as the “field strength parameter”.

(Note: for > m = −(I + 1/2) the square root is an exact
square, and should be interpreted as +(1−x)). Notably,
the electric quadrapole interaction is zero for L = 0, J =
1/2, so this formula is fairly accurate.

Appendix B: Derivation of the Breit-Rabi formula

(note: this portion was posted on Wikipedia under the
article “Zeeman effect” by the primary author). In the
magnetic dipole approximation, the Hamiltonian which
includes both the hyperfine and Zeeman interactions is

H = hA~I · ~J − µ · ~B

H = hA~I · ~J − µB(gJ ~J + gI~I) · ~B
(B1)
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To arrive at the Breit-Rabi formula we will include the
hyperfine structure (interaction between the electron’s
spin and the magnetic moment of the nucleus), which

is governed by the quantum number F ≡ |~F | = | ~J +
~I|, where ~I is the spin angular momentum operator of
the nucleus. Alternatively, the derivation could be done
with J only. The constant A is known as the zero field
hyperfine constant and is given in units of Hertz. µB
is the Bohr magneton. h̄ ~J and h̄~I are the electron and
nuclear angular momentum operators. gJ and gF can
be found via a classical vector coupling model or a more
detailed quantum mechanical calculation to be:

gJ =gL
J(J + 1) + L(L+ 1)− S(S + 1)

2J(J + 1)

+ gS
J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)

gF =gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)

+ gI
F (F + 1)− J(J + 1) + I(I + 1)

2F (F + 1)

As discussed, in the case of weak magnetic fields, the
Zeeman interaction can be treated as a perturbation to
the |F,mf 〉 basis. In the high field regime, the mag-
netic field becomes so large that the Zeeman effect will
dominate, and we must use a more complete basis of
|I, J,mI ,mJ〉 or just |mI ,mJ〉 since I and J will be con-
stant within a given level.

To get the complete picture, including intermediate
field strengths, we must consider eigenstates which are
superpositions of the |F,mF 〉 and |mI ,mJ〉 basis states.
For J = 1/2, the Hamiltonian can be solved analytically,
resulting in the Breit-Rabi formula. Notably, the electric
quadrapole interaction is zero for L = 0 (J = 1/2), so
this formula is fairly accurate.

To solve this system, we note that at all times, the
total angular momentum projection mF = mJ +mI will
be conserved. Furthermore, since J = 1/2 between states
mJ will change between only ±1/2. Therefore, we can
define a good basis as:

|±〉 ≡ |mJ = ±1/2,mI = mF ∓ 1/2〉 (B2)

We now utilize quantum mechanical ladder operators,
which are defined for a general angular momentum oper-
ator L as

L± ≡ Lx ± iLy (B2)

These ladder operators have the property

L±|L,mL〉 =
√

(L∓mL)(L±mL + 1)|L,mL±1〉 (B2)

as long as mL lies in the range −L, . . . ..., L (otherwise,
they return zero). Using ladder operators J± and I± We
can rewrite the Hamiltonian as

H = hAIzJz +
hA

2
(J+I− + J−I+)− µBB(gJJz + gIIZ)

(B2)
Now we can determine the matrix elements of the

Hamiltonian:

〈±|H|±〉 = −1

4
A−µBBgImF±

1

2
(hAmF−µBB(gJ−gI))

(B2)

〈±|H|∓〉 =
1

2
hA
√

(I + 1/2)2 −m2
F (B2)

Solving for the eigenvalues of this matrix, (as can be
done by hand, or more easily, with a computer algebra
system) we arrive at the energy shifts for F = I ± 1/2:

∆E =
−h∆W

2(2I + 1)
+µBgImFB±

h∆W

2

√
1 +

2mFx

I + 1/2
+ x2

(B2)

x ≡ µBB(gJ − gI)
h∆W

∆W = A

(
I +

1

2

)
(B2)

where ∆W is the splitting (in units of Hz) between
two hyperfine sublevels in the absence of magnetic field
B, and x is referred to as the ‘field strength parameter’
(Note: for m = −(I + 1/2) the square root is an exact
square, and should be interpreted as +(1 − x)). This
equation is known as the Breit-Rabi formula and is useful
for systems with one valence electron in an s (J = 1/2)
level (Woodgate, 1993).
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