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1 Introduction

Liquid water is one of the most fascinating substances in the universe. It possesses a number of
anomalous properties which cannot be found in other liquids - on his website, Martin Chaplin
identifies 69 different anomalous properties.[4] Chief among these are anomalously high melting
and boiling points relative to water’s small molecular weight, water’s expansion of volume upon
freezing, and the lowering of the freezing point with pressure. Closely related to these is a class of
response function anomalies:

• The isothermal compressibility KT has a minimum at 46 C and then increases at lower
temperatures. (Usually KT decreases monotonically with T .)

• The specific heat CP has a minimum at 36 C and increases at lower temperatures. (Usually
CP decreases monotonically with T .)

• The thermal conductivity κ of water is unusually high and increases with temperature until
reaching a maximum at 130 C. (Usually κ decreases monotonically with temperature)

All of the anomalous properties of water are connected to the fact that water forms an extensive
hydrogen-bond network. Water is the only low molecular-mass molecule to form a hydrogen bonded
liquid (other examples of hydrogen bonded liquids are ammonia, which forms only weak hydrogen
bonds, and chain alcohols). It should be noted that, despite the fact there are only a few hydrogen
bonded liquids, hydrogen bonds are found in many other contexts such as in proteins, DNA and
“hydrogen bonded solids” such as cellulose, nylon and other polymers.

The hydrogen bond network of water has been studied extensively over the past one hundred
years using a wide variety of experimental and theoretical techniques. Among these has been
network analysis, which is what this paper will focus on.

In this paper at times we will use the language of network science. Nodes correspond to
water molecules and links will correspond to hydrogen bonds. The degree of a molecule refers to
the number of molecules a given molecule is connected to, and the max number of possible links a
molecule can make is called the “coordination” number of the molecule. For water the coordination
number is four. Each water molecule can accept two hydrogen bonds and can also donate two.
The hydrogen bond in water is not symmetric, ie. the proton (hydrogen) involved in the bond
remains closer to the donor molecule than the acceptor. Thus, one could create a directed network
by defining a direction from the donor to the acceptor. However we have not had any reason for
doing this so far so all of our networks are undirected.

2 Previous studies

The first study of the H-bond network which used techniques belonging to network science was
published by Rahman & Stillinger in 1973.[16] Their simulations were done with the “ST2” model
of water[26] which is an early five site highly tetrahedral model which was later supplanted by
more carefully fitted models. The overall accuracy of the ST2 model is questionable – for instance
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the observed density minimum of the model is too high (300 K vs. 277 K) and the self diffusion
constant was described by its creators as “highly erroneous”. Still, some interest in the ST2 model
continues to this day, especially after it was shown to exhibit a liquid-liquid phase transition at
low temperatures.[10] In addition to their use of the ST2 model, Rahman & Stillinger’s definition
of a hydrogen bond is also questionable. They a simple definition which is illustrated in figure 1.
Two molecules are considered to be bonded if the potential energy of interaction is below some
cutoff VHB .

Figure 1: Schematic of the H-bond definition used
by Rahman & Stillinger. (The actual potential
also includes electrostatic interactions)

In this early work, Rahman & Stillinger
studied the number of non-short-circuited poly-
gons (NSCPs) of size j found in the H-bond
network of 216 ST2 molecules at 283K. A poly-
gon (network term: cycle) is considered not to
be “short circuited” if there are no links be-
tween nodes going through the interior of the
polygon. In other words, two polygons (such
as two triangles) may share an edge, but the
larger polygon which encompasses both should
not be counted. The distribution of NSCPs is
of interest because it allows one to compare the
liquid hydrogen bond network with the hydro-
gen bond network found in solid water. In solid
water, the allowed sizes for NSCPs is fixed by
the crystal structure. Table 2 shows the sizes
of NSCPs for different phases of ice.

Table 1: Sizes of non short-circuited
polygons in various phases of ice. Table
copied from (Rahman, 1973), water ice
data was originaly taken from (Einsen-
berg, 1969).

Phase Allowed NSCP Sizes
Ice Ih 6
Ice Ic 6
Ice II 6
Ice III 5
Ice V 4
Ice VI 4,8
Ice VII 6
Ice VIII 6

Cl2 /CH4 / Xe hydrates 5,6

Rahmann & Stillinger proceeded to calculate the distri-
bution of NSCPs of size j for four different choices of VHB
between -2.121 and -4.848 kcal/mol. They found that their
choice of VHB = −4.848 kcal/mol was too restrictive and gave
a distribution of j which was limited to j = 5 and j = 6
For their other three choices of VHB they found distributions
which were peaked around j = 6 but which also had sizable
tails extending out to j = 11, which was the highest j they
considered. From the distributions it was clear that NSCPs
with j greater than 11 were certainly not rare. These findings
cast serious doubt on earlier ideas that the hydrogen bond
network of water might be considered (at least locally) very
similar to that of ice, yet “disrupted” enough to make water
a liquid.
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Figure 2: Figure from [6]. (a) The mole precentage of water molecules participating in clusters
of size n for various values of VHB = −kε. (b) Same data as in (a) but magnified to show the
percolation transition near k = 60. The number of molecules in the simulation was 216, so values
of n near 200 correspond to clusters that fill all of space.

Geiger, Stillinger & Rahman continued studying the hydrogen bond network of water in 1978[6]
using trajectories from earlier simulations of the ST2 potential.[26][27] In this work they looked
at the distribution of cluster sizes for various choices of VHB . VHB was parameterized by an
integer k such that VHB = −kε where ε =.07575 kcal/mol. These distributions are shown in
figure 1. For high values of k, the choice of VHB was too restrictive, so the hydrogen bond density
was low and the cluster size distribution decayed rapidly. At k = 60 a remarkable percolation
transition was observed to occur. In the language of network science, at k ≈ 60 the percolation
threshold is reached and a giant component is formed. The giant component extends through the
entire simulation cell, although there are molecules which are not bound to it. For k = 24 and
smaller, the criteria becomes too free and all molecules are “bound” into a single cluster. They
then went on to analyze n̄HB , the average number of hydrogen bonds per molecule. There is no
easy experimental way to measure nHB and prior to computer simulations only various simplified
theoretical models could be used. These models gave a wide range of predictions for n̄HB , from as
much as n̄HB = 3.9 to as little as n̄HB = 1.84[6]. They were then able to plot the average cluster
size j̄ vs. n̄HB . Their most dramatic result came from thier simulation with N = 1728 molecules,
where they observed that j̄ shot up to close to the size of they system when n̄HB ≈ 1.3. For their
two other simulations with N = 216 the sudden increase in j̄ occurred when n̄HB = 1.5− 2.

The results of Geiger & Stillinger are easily understood as a type of percolation transition. In a
percolation transition, the order parameter is the concentration of bonds x (or equivalently, n̄HB).
When x � xc only small isolated clusters appear. For an infinite system, the mean cluster size j̄
diverges at x = xc. Above xc the system is dominated by one cluster of infinite size (the “giant
component”) with the possibility of many small disconnected clusters scattered throughout. Above
xc any two nodes (molecules) are likely to be connected through some path in the giant component
and the chance that one of the two molecules is not in the giant component becomes very small. In
a finite system, something similar happens although now the size of the giant component is limited
to the size of the system.

The observation that the percolation transition occurred when n̄HB ≈ 1.3 confirms a theory of
Stockmayer, which drew on the earlier “gellation model” of Flory.[28] Stockmayer uses an order
parameter called the “degree of polymerization” α which is the fraction of possible bonds formed by
each molecule. The maximum number of a bonds a molecule can form he calls the “functionality”
f . The percolation phase transition occurs when α = αc where αc is given by:

αc =
1

f − 1
(1)

For water the obvious choice is to have f = 4, yielding αc = 1/3. The average number of hydrogen
bonds at the critical point is then given by n̄HB = fαc = 4/3 ≈ 1.3.
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2.1 The percolation model of Stanley & Teixeria

It appears that the next major study of the H-bond network was done by Stanley & Teixeira in 1980
when they looked in more detail at the percolation transition.[25] Stanley & Teixeira’s analysis
was quite comprehensive, with additional Monte Carlo simulations and calculations of cluster sizes
given in an 1984 follow up paper.[3] It is worth noting that network connectivity information is
impartial to the spatial positions of molecules and that percolation occurs in “connectivity space”
and not in the real space which physicists are used to thinking in terms of. In the cases we are
interested there is clearly a link between the connectivity and real spaces since molecules which
are connected will be spatially close. To help visualize the connectivity space and map it onto
real space, percolation is often considered to happen on a lattice - although this is by no means
necessary – for instance Stockmayer’s theory does not assume a lattice. Percolation is most easily
studied on a square lattice (at least in the opinion of this author), but for water, the tetrahedral
lattice makes more sense. Somewhat counter-intuitively, despite the fact that both the square
lattice and the tetrahedral lattice have coordination of four (z = f = 4), the percolation thresholds
for them are different. In percolation, the topological properties of the lattice are very important.
Table 2.1 shows percolation thresholds for bond percolation and site percolation for various lattices.

lattice bond site
1D any 1.0 1.0

2D
square 1/2 .592746

triangular .34729 1/2
honeycomb .65271 .6962

3D

simple cubic .2488 .3166
BCC .1803 .246
FCC 0.1992365(10) 0.1201635(10)
HCP 0.1992555(10) 0.1201640(10)

tetrahedral(ice) 0.388(10) 0.433(11)

Table 2: Bond percolation and site percolation thresholds for some
well known lattices. These numbers are concentrations of bonds/sites
and are equivalent to probabilities. In addition to the exact results of
1/2 for the square bond percolation and triangular site percolation,
two other exact results are known - the triangular bond threshold
(2sin(π/18)) and the honeycomb bond threshold (1-2sin(π/18)). The
rest of the values are extrapolated from computer simulations.

Stanley & Teixeira choose to fo-
cus their attention on four-bonded
molecules, working on a cubic lat-
tice. If the probability of a bond
is pB = n̄HB/4 then the probabil-
ity that a molecule is four bonded
is simply p4B . Next, they demon-
strate the somewhat surprising result
that four-bonded molecules tend to
clump together, despite the fact that
bonds are independent and uncorre-
lated. The reason for this is simply
do to the combinatorics of the situa-
tion.

The fact that the four bonded
molecules are correlated can be
proven mathematically as follows. To
avoid confusion, Stanley refers to four
bonded sites as “black dots” because that is how he labeled them in his diagrams (see fig 3). The
probability that a molecule is a “black dot” is simply c = p4B . The probability that a molecule is
four-bonded molecule and surrounded by neighbors which are all four-bonded is:

P = p4B ∗ p3B = c7/4 (2)

The probability that a molecule is four-bonded and surrounded by neighbors which are not four-
bonded is:

N = p4B(1− p3B)4 = c(1− c3/4)4. (3)

Now consider if the black dots were distributed randomly with probability c (the uncorrelated
case). Then the probability that a site is a black dot and surrounded by sites which are not black
dots is:

N∗ = c(1− c)4 (4)

Likewise the probability that a molecule is four-bonded and surrounded by molecules which are
four-bonded is:

P ∗ = c2 (5)

We find that N < N∗ or that P > P ∗ which both imply that the distribution of black dots
(four-bonded molecules) is correlated - ie. they clump together.

We can gain more insight comparing by looking at P/P∗ and N/N∗ as a function of pB
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(designated p here for simplicity):

P

P ∗ =
c7/4

c2
=
p7

p8
=

1

p

N

N∗ =
c(1− c3/4)4

c(1− c)4
=

(1− p3)4

1− p4)4

(6)

At low temperatures, we expect p → 1, whereas at high temperatures we expect p → 0. The
behaviors of P and N in the correlated and uncorrelated cases are shown more explicitely in figures
4 and 5.

Figure 3: Bond percolation example from [25]. (a) pB = .2 (b) pB = .4 (c) pB = .6
(d) pB = .8. Here these simulations are done on a 2D square lattice, whereas for water a 3D

tetrahedral lattice is more appropriate. The four-bonded molecules are shown as black dots. The
bond percolation threshold is 0.5 but the percolation threshold for four-bonded molecules is .56.
So, even at pB = .8 the percolation threshold for four-bonded molecules has not been reached,

since f4 = p4B = .4096.

Figure 4: N/N∗ and P/P ∗ vs pB . At low temperatures, pB → 1. P corresponds to the number of four-bonded
molecules which are surrounded by four-bonded molecules in the correlated (no star) and uncorrelated (starred)
cases. N is the probability of finding a four bonded molecule which is not surrounded by four bonded molecules.
The interesting thing here is that at low temperatures P is the same in both the correlated and uncorrelated case,
but at high temperatures (small pB), P becomes exponentially larger in the correlated case (of course, at the same
time, P → 0 at high T ).
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Figure 5: Graphs of P , P ∗, N and N∗. N is so small that it appears near zero through the entire range on this
graph. It is interesting to see how the difference changes with pB , which goes to 1 as T → 0.

The end result of this is that there are unavoidable correlations in the distribution of four-
bonded sites. Stanley & Teixera assume that the bondedness of a molecule is proportional to the
amount of volume that it takes up:

V0 . V1 . V2 . V3 . V4 (7)

Thus four-bonded clusters will have lower density, leading to density fluctuations in the liq-
uid. The isothermal compressibility is directly related to density fluctuations, according to linear
response theory:

KT ≡
1

ρ

(
∂ρ

∂P

)
T

KT =
V

kBT

〈ρ− 〈ρ〉〉2

〈ρ〉2
=

V

kBT

〈ρ2〉 − 〈ρ〉2

〈ρ〉2

(8)

Normally KT decreases monotonically with lower temperature. However, the density fluctu-
ations from four-bonded site correlations will create an anomalous effect – by increasing KT at
lower temperatures. Using a variety of experimental evidences, Stanley & Teixeira argue that this
is what is responsible for the observed minimum in KT at 46 C.

In addition to creating clusters of lower density, four-bonded sites will also create clusters with
lower entropy. This yields to anomalous behavior in the specific heat at constant pressure CP .
Using similar arguments, Stanley & Teixeira show how the four-bonded clustering can explain two
other static response functions – the constant volume specific heat CV and the thermal conductivity.

3 Effect on dynamic response functions - in particular the
dielectric response ε(ω, T )

The dynamic response functions which are usually of interest are step response functions. For
instance, if an electric field is applied and suddenly turned off, how does the polarization P (t)

decay with time? A related question is, at a molecular scale, if a molecule has an orientation ~V
at time t0, how does its orientation decay with time, on average? Usually to fairly good accuracy
such decays can be described as single exponential decays with a time constant τ . In their work,
Stanley & Teixeira consider the rotational decay time constant τR for a single molecule. They
make a number of gross simplifications – first they assume that molecules forming 1, 2, or 3 bonds
are “immobile”. The fraction of immobile molecules is denoted FI

FI ≡ f2 + f3 + f4 (9)

They next assume that hydrogen bonds are broken on a timescale τHB and that snapshots of
water which are separated by times greater than τHB are uncorrelated. This is a drastic assump-
tion, since “memory effects” surely extend beyond the average hydrogen bond lifetime τHB . Now
consider l snapshots, each separated in time by τHB . Then the probability of a molecule remaining
immobile for l snapshots in a row is F lI . Now we wish to find the time τR = lτHB required for
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the probability of being immobile to decrease by a factor of 1/e (in their paper, Stanly & Teixeira
used 1/2, but 1/e is a more standard measure of decay). In other words:

F τR/τHB =
1

e
τR =

τHB ln( 1
e )

ln(FI)
(10)

Stanley & Teixera also proposed an approximate temperature dependence for pB :

pB = 1.845− .004T (11)

Using the relation FI = p2B + p3B + p4B and equation 11 one can derive an expression for τR(T ).
One can relate τR to the diffusion constant since experimentally it is observed that τRD =

constant. Using experimental data for τR one can also use these relations to estimate pB and/or
τHB . This was done by Nabokov & Lubimov in 1988.[13] The microscopic relaxation time τR is
hard to access experimentally, so they used the macroscopic (Debye) relaxation time τD and a
(rather questionable) theoretical relation between τD and τR.[13]

3.1 Subsequent work using network analysis

In a 1984 paper, Speedy argued that pentagons may be a better way of identifying low density
patches than four-bonded molecules.[23] Work by Speedy & Mezei in 1985 studied the concentration
of pentagons and paired pentagons using the ST2 and MCY models.[24] They found that the
concentration of pentagons has a strong temperature dependence and they even calculated radial
distribution functions (RDFs) for pentagons and paired pentagons.

In 1979 Sceats & Rice proposed a “zeroth order random network model of liquid water”[21]
which proposed modeling water as a completely connected, highly tetrahedral network. Between
1979 and 1981 they published a number of papers on what they called the Random Network Model
(RNM) of water.[18][19][20][17] Further work by Belch & Rice looked at the distribution of NSCPs
(which they call “rings”) in TIPS-2 water at five temperatures between 243 and 313 K.[2] They
found that rings of size six (hexagons) were the most common (≈ 20% of molecules belonged to
hexagons at 298 K vs 15% in pentagons, 7.6% in decagons, .3% in triangles and 2.4% in no ring).

A study in 1995 analyzed NSCPs in ST4 water and compared bulk water with hydration
water around small hydrophobic solutes such as methane. It was found that the cage structures
around hydrophobic solutes contain a lot of pentagons, wheras in bulk water much larger polygons
dominate.[7]

Work was published in 1990 which did a network analysis of the SPC/E model.[12] In 1996
Shiratani & Sasai proposed the “local structure index” (LSI), which is a continuous parameter
that measures the variance of the radii of molecules within a sphere r < 3.7Å around a given
molecule.[22] The LSI measure is not really related to network analysis, but their analysis essen-
tially reiterates the ideas of Stanley & Teixeira about four-bonded patches, but with a discrete
bondedness measure being replaced by LSI. LSI is directly related to bondedness because when
molecules are four bonded they have a large LSI whereas when they have no bonds they will have
an LSI close to zero. Shiratani & Sasai then go on to extend the work of Stanley & Teixeira by
looking at the fluctuations in LSI over time and computing the power spectra of LSI(t).

There has also been some work done investigating the percolation threshold in superheated and
supercritical water.[15][5] At slightly below the boiling temperature, the hydrogen bond network
of water is still very well connected and water is not near the percolation threshold (this is seen
very clearly in the 400 K simulations reported below). Thus boiling/condensation and crossing the
percolation threshold from above or below are not related as one might naively expect. However,
there has been some work looking at water beyond the critical point of the phase diagram.[15]
SPC/E Monte Carlo simulations show that if one extends the vapor-liquid coexistence curve be-
yond the second-order critical point at (647 K, 22 MPa) then this extension effectively becomes
a “percolation line” - water above the percolation line (higher pressure) has a giant component
whereas water below does not.[15] Another paper hypothesizes that there is a maximal limit to
superheating which corresponds to the percolation threshold.[5] As with any percolation transition,
at the percolation line there is a great deal of self-similar structures and the distribution of cluster
sizes is described by a power law.
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4 Methods

4.1 Identification of hydrogen bonds

The nature of the hydrogen bond has been studied in great detail. It is not our task here to
describe how hydrogen bonding works, rather we simply wish to know how to identify a hydrogen
bond.

IUPAC, the international standards organization for chemists, laid out a set of six criteria which
should be satisfied by a hydrogen bond in 2011.[1] Although six criteria sounds like a lot, these
criteria are left very general, with two of the more restrictive criteria being that the Gibbs energy
of formation of the hydrogen bond be greater than the thermal energy of the system and that
there be partial charge transfer between the donor and acceptor leading to partial covalent bond
formation within the hydrogen bond. In a classical molecular dynamics simulation we cannot see
charge transfer, and in fact all that one does see is the coordinates of the atoms. Thus we need a
criterion in terms of the coordinates (geometry) of the situation, which is something IUPAC does
not provide. A traditional geometric criteria is that the oxygen-oxygen distance be less than 3.5 Å
and that the bond angle be less than 35◦. 3.5 Å is just slightly more than the distance to the first
minima in the oxygen-oxygen radial distribution function (at ≈ 3.2 Å). This criteria undoubtedly
leaves out some weaker bonds which would still fall under the IUPAC criteria, and may at times
also over count in the rare instance that a third water molecule is in the proximity. Ideally, one
should test the dependence of the network properties on the definition.

Sometimes, the max degree of a molecule is strictly limited to four in the H-bond definition
since there are four binding sites. In the event that a molecule has more than four hydrogen
bonds, only the strongest four are counted. However, degrees of five are also accepted by chemists
as physically reasonable if one binding site has a bifurcated hydrogen bond. A bifurcated hydrogen
bond is thought to form in water during the short period of time between the breaking of one bond
and the forming of another. If one accepts bifurcated hydrogen bonds, then even degrees of six
become technically possible if a molecule happens to have two bifurcated hydrogen bonds at once.
With an acceptance angle of 35◦, we found about 7% had five bonds and 1% had six bonds and the
average degree was 3.3-3.5 at 300 K. Lowering the acceptance angle to 30◦ removed the molecules
with degree six, but also lowered the average degree to 2.9, which is lower than the number inferred
from experiment (experimentally, the average degree is believed to be ≈ 3.5). However, at 330K,
the average degree jumped up to 3.7 unexpectedly with 30◦, suggesting something is spurious
about our 300 K data. Thus we choose to use the more conservative value of 30◦ for this work.
A detailed analysis of different hydrogen-bond criteria including plots of bond lifetimes and angle
distributions is given by Kumar et. al.[9] The code used for hydrogen bond identification and
generation of the adjacency matrix was written by my advisor, Prof. Marivi. Fernández-Serra.

4.2 Storing the bond data

One of the decisions one always has to make before doing any network analysis is the format for
storing the network. The three most popular formats are the adjacency matrix, adjacency list
and adjacency tree, and each format has many pros and cons.[14] In practice, for large networks
(N > 1000) the matrix format becomes more cumbersome then the adjacency list & adjacency
tree, since the size of the matrix goes as N2 whereas the size of the list and tree structures goes
as 2e + e where e is the number of edges (links/bonds). For networks like the internet or social
networks, which may contain 100, 000+ nodes, (and yet are sparsely connected) the matrix format
is completely out of the question, whereas for small chemical networks it may be a logical choice.

4.3 Finding the degree distribution

The degree of molecule i can easily be calculated by summing along the ith row of the adjacency
matrix. As we did when considering percolation theory, let us consider the probability that a given
molecule has a hydrogen bond at one of its four binding sites to be p. The probability the bond at
a given binding site is broken is 1− p. Then the probability of a molecule having j bonds is given
by:

P (j) =

(
4

j

)
pj(1− p)4−j =

4!

j!(4− j)!
pj(1− p)4−j (12)
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Table 3: Formulae for the number of cycles of a given type.

order of cycle equation
3 1

2

∑
i(A

3)ii
4 1

2

∑
i

[
(A4)ii − ((A2)ii)

2
]

5 1
2

∑
i

[
(A5)ii − 4(A3)ii(A

2)ii
]

We tried fitting to this function at various temperatures. (see below) This binomial distribution
works remarkably well even though it ignores the well established phenomena of hydrogen bond
cooperativity.

4.4 Finding non-short-circuited polygons

Enumerating all NSCPs of size n is a very computationally intensive task. Rahmann & Stillinger
do not provide much detail on how they searched for NSCPs, other than the fact that they stored
their matrix in a list, and that finding NSCPs of size greater than 11 was too computationally
intensive for them. One must be particularly careful when dealing with molecules at the edge of the
simulation cell, since almost all computer simulations use periodic boundary conditions. If a non-
closed polygon stretches across the edge of the unit cell into the period image of the cell, it is quite
possible that whatever algorithm is being used will mistakenly count extra NSCPS going across
the boundary. To correct for this, Rahmann & Stillinger did their analysis by first surrounding
their unit cell with eight identical copies and then considering all the molecules in this “supercell”
to be independent. The supercell was then considered to have periodic boundary conditions of
its own. In this way, the effects of molecules at the boundary were reduced, since the fraction of
molecules at the boundary of the larger cell is smaller.

The field of graph theory offers some help towards attacking this problem. The central object
in graph theory is the adjacency matrix Aij . In an unweighted undirected graph, Aij = 1 if there
is a bond/link/edge between nodes i and j and equals zero otherwise. It is well known that (Ar)ij
gives the number of walks of length r between i and j. A walk of length r is defined as a sequence
of edges {(n1, n2), (n2, n3), · · · , (nr−1, rr)} where n1 = i and nr = j. This should not be confused
with a path, which is a sequence of edges from i to j such that each edge is unique.1 We will also
define a cycle as a path from i to i. The term closed walk refers to a walk from i to i.

Looking at Aii will give some idea of the number of polygons of size r , but it will also result
in a large number of superfluous walks being counted. Let us consider several small values of r.
(A2)ii will give us the number of walks of length two from i to i, which is equal the degree of i.
(A3)ii will give the number of triangles connected to node i - but double counted because both
clockwise and counterclockwise are counted. With (A4)ii things start to get more complicated.
(A4)ii will contain contributions from squares (double counted), but also from walks around the
nearest neighbors. It is possible to determine how many such walks are possible – for a node with
degree k, k2 such walks are possible. Now let’s consider (A5)ii - this will include all the pentagons
(double counted) but also 2×(no of triangles)×(degree) other walks. Table 3 shows how these
results can be used to count the number of triangles, squares and pentagons.

Further formulae could be developed, of course, but they will become more and more compli-
cated. However these formulas do not allow us to isolate the non-short-circuited polygons which
we are interested in. In graph theory, the proper term for a NSCP is a “chordless cycle” (also
called a “graph hole”). A chord of a cycle C is defined as an edge not lying in the edge set of C
whose endpoints lie in the vertex set. Counting cycles is well known to be an NP-hard problem,
so counting chordless cycles is at least NP-hard and likely belongs to an even more difficult class
of problems called #P-hard.

1Note: this is a major source of confusion because a quick glance at various websites will show that the term
“path” is used differently by different authors. The MIT networks course on Open Courseware advocates using
the term “path” for a walk with no repeating edges, but many other references (particularly in older literature)
use the term “path” to mean a walk, and the term “simple path” to refer to the case where there are no repeated
edges. It appears that the terms “path” and “simple path” were originally in use, but in a quest to make scien-
tific/mathematical literature as dense and abstruse as possible, many authors started not including the qualifier
“simple” and left it implied. The term “walk” was introduced in the 1970s to help remedy all the confusion and
should be employed in the opinion of this author.

9



Table 4: Network diameters & cluster sizes. Data from two snapshots at 300K are shown.

Temperature Network Diameter Component Sizes
220 11 512
240 12 512
270 11 512
300 12 512
300 18 506, 1
330 12 512
370 13 512
400 12 512

5 Network properties of the H-bond network

5.1 Visualization

The network can be visualized by importing the adjacency matrix into a software package such as
Mathematica. Here we have plotted the network at 300 K using the ‘spring-electrical embedding’
feature in Mathematica. Spring electrical embedding considers all nodes to be connected by springs
and to possess negative electrical charge. The spring and electrical energy function is minimized to
make the graph look pretty! (And also to assist in the identification of outlying nodes and various
structures in the graph.)

Figure 6: Spring electrical embedding at 300 K. All of the other snapshots we looked at were
completely connected. This one at 300 K was interesting because there are some disconnected
nodes.

5.2 Network Diameter & Component Sizes

The network diameter is defined as the longest minimal path (geodesic) between two nodes on
the network. Technically for disconnected graphs the network diameter is infinite, but it can be
redefined as the longest minimal path among the various components of the graph. The size of a
component is simply the number of nodes in the component. We found almost all the networks
were fully connected, and remained completely connected even after changing the maximum angle
in our H-bond definition from 35◦ to 30◦.
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5.3 Degree distribution

Figure 7: Degree distributions at different temperatures

Figure 8: Degree distribution at 300 K fit to a binomial distribution (eqn. 12). The fit was only
done between 0 and 4, but the degree of 5 was plotted anyway.
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Figure 9: Degree distribution at 220 K fit to a binomial distribution (eqn. 12). The fit was only
done between 0 and 4, but the degree of 5 was plotted anyway.

Figure 10: Degree distribution at 400 K fit to a binomial distribution (eqn. 12). The fit was only
done between 0 and 4, but the degree of 5 was plotted anyway.

5.4 Cycles

As was mentioned, writing a code to find NSCPs (chordless cycles) is a somewhat painstaking task.
However, the Combinatorica package in Mathematica contains a function called ExtractCycles[]
which creates a maximally sized list of disjoint cycles on a graph. A list of disjoint cycles is not at
all a complete list of all the cycles, but rather is a list of cycles where no two cycles share an edge.
For example at 300 K this function found 47 cycles. This is a small number, but the distribution
of sizes gives us some idea of the actual distribution and looks rather similar to distributions which
have been previously published:
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Figure 11: Distribution of the sizes of disjoint cycles at 300 K.

5.5 Clustering coefficients

Then the clustering coefficient of node i is defined as:

CCi =
of pairs of neighbors of i which are connected

of pairs of neighbors of i
(13)

Figure 12: Relevant examples of clustering coefficients for the central node.

One can also define a average clustering coefficient as

CC =
1

n

∑
i

CCi (14)

One can also define a global clustering coefficient as

CC =
3(number of triangles)

number of triplets
(15)

Note that CC 6= CC which can be a source of confusion.
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Figure 13: Clustering coefficients at T = 300 K. Most molecules had CCs of zero, but there also a
few with values of 1/6, 1/3 and 1/10.

Figure 14: Clustering coefficients at T = 220 K. Most molecules had CCs of zero, but there also a
few with values of 1/6 and 1/10.

For water we find that most nodes have a clustering coefficient of zero and that clustering is
quite low. This is expected because the triangular arrangement is difficult to achieve geometrically.

5.6 PageRank (TM)

Recently it was shown that the PageRank centrality measure can be useful for classifying polyhedral
arrangements of molecules, particularly in the liquid phase, where many such arrangements may
be possible.[8][11] For instance, water molecules may form polyhedra around dissolved molecules
in complex way. For each polyhedra, there is a unique PageRank value, so the PageRank measure
provides an easy way of classifying what polyhedra are present in the system given the hydrogen
bond adjacency matrix (or some other type of ‘bonding’ matrix).

PageRank is a measure of centrality, which means it measures how important a given node is.
It was originally developed in the context of HTML networks, which are directed networks (so each
node has both “in” and “out” degrees), yet the PageRank formula can be applied to undirected
networks as well. The equation for the PageRank xi of node i is:

xi = α
∑
i

Aij
xj

Max(kout
j , 1)

+ β (16)

(The max function must be included to prevent division by zero in the case that a node has
no out degrees). β is an intrinsic PageRank which is initially given to each node. If β = 0 then
we will have the issue that a node with zero out-degree will have zero initial PageRank, and thus
not contribute to the PageRank of other nodes, which doesn’t make much sense. Often times β is
set to one. α is an adjustable parameter which is pretty much arbitrary but which should be less
than 1/k, where k is the largest eigenvalue of Aij , to avoid PageRank singularities.[14] In the case
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of web search α is interpreted as the probability that a user will click on a link, and β is set as
β = (1 − α)/N . The decision to include a 1/N in the choice of β was one done simply to ensure
that all the PageRanks sum to one, thus giving a probability distribution. The PageRank then
can be interpreted as follows: supposing a surfer selects a page out of N pages randomly, and then
clicks on links with probability α, then the PageRank of page i gives the probability that the surfer
will end up on page i after a long time. Google uses α = .85 and for consistency this is the value
which is usually used. Mooney experimented with values of α = .85 and α = .99 in their work.

There are two ways to solve equation 16: iteratively and by a direct matrix solution. The
iterative method is usually employed in real-world applications because it is much faster, but in
our case we choose to use the direct matrix solution for simplicity. The matrix solution of 16 is:

x = β(I− αAD)−11 (17)

Here I is the identity matrix , 1 is a column vector of ones and D is a diagonal matrix with
Dii = 1

Max(kout
j ,1)

Figure 15: PageRanks for the central molecule (solute molecule) for different polyhedral arrange-
ments. By computing the PageRank for each solute particle and the molecules within a radius r
of the particle, PageRank can be used to efficiently classify the types of polyhedra which surround
the solute particles. Figure taken from [8].
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Figure 16: PageRanks at T = 300 K with α = .85, β = (1 − α)/N . As is fairly obvious, the
peaks correspond to sets of waters with ≈ 0, 1, 2, 3, 4, and 5 hydrogen bonds. The number of
hydrogen bonds of neighboring waters (and overall structure of the network) is also important,
thus explaining why the peaks have some breadth.

6 Possible future work

There is some future work which could be done:

• Write code to find the number of NSCPs / chordless cycles.

• Check out other hydrogen bond criteria besides distance/angle.

• See if averaging over a few frames or larger amount of data helps make the graphs nicer.
(averaging over frames is standard practice. I only used one snapshot.)
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