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In generative modeling, the task of the generator is to reproduce the training data dis-

tribution as closely as possible. Broadly speaking, there are three classes of criteria that

are used when comparing the generator’s distribution with the training data distribution -

log-likelihood or a divergence metric, Parzen windows, and visual inspection (in the case of

images, for instance).[1] Interestingly, these three methodologies measure different things,

so good performance under one type of criteria does not imply good performance under

another.[1] Maximizing log-likelihood is equivalent to minimizing Kullback-Leibler diver-

gence, but often other divergence metrics are used, and finding the most useful (eg. compu-

tationally expedient) has been the subject of much research.

The original paper on generative adversarial networks (GANs)[2] introduced the following

objective function:

min
G

max
D

V (D,G) = Ex∈pdata(x)[logD(x)] + Ez∈pz(z)[log(1−D(G(z))] (1)

This form of the objective function has a nice theoretical interpretation as a two per-

son minimax game. The solution to the minimax problem can be interpreted as a Nash

equilibrium, a concept from game theory. However, this objective function is rarely used

in practice. Firstly, as noted in the original paper, this objective function does not provide

a very strong gradient signal when training starts because then log(1 −D(G(z)) saturates

(goes to negative infinity) and the numerical derivative becomes impossible to calculate. In

practice it is better to maximize log(D(G(z))) when training the generator. Before moving

onto to discuss other objective functions, it is worth trying to understand what this objective

function does. Equation 1 can simplified as follow:

V (D,G) =

∫
x

pdata(x) log(D(x))dx +

∫
z

pz(z) log(1−D(G(z))dz

=

∫
x

pdata(x) log(D(x)) + pg(x) log(1−D(x))dx

(2)
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For a fixed G, the optimal discriminator is :

D∗G(x) =
pdata(x)

pdata(x) + pg(x)
(3)

If we assume D = D∗G, then the objective function for the generatior can be expressed in

terms of the Jensen-Shannon divergence JS(p, q):[2]

C(G) = − log(4) + 2JS(pdata, pθG) (4)

Jensen-Shannon divergence is defined as:

δJS(p, q) =
1

2

[
DKL

(
p

∣∣∣∣∣∣∣∣p+ q

2

)
+DKL

(
q

∣∣∣∣∣∣∣∣p+ q

2

)]
(5)

where DKL(p||q) is the famous Kullback-Leibler (KL) divergence:

δKL(p||q) =

∫
dxp(x) log

p(x)

q(x)
(6)

This expression differs from relatively entropy, which appears widely in information theory

and physics, by only a minus sign (S(p|q) = −δKL(p||q)).[3]

A. Interpreting KL divergence

Why is KL divergence referenced so much in machine learning? One reason is that it

can be shown that maximizing the log-likelihood of data under a model is the same as

minimizing the KL divergence between the data distribution and the model distribution (ie.

minDKL(pdata||pθ)).[4] To see this, observe that:

δKL(pdata||ptheta) =

∫
pdata(x) logdata(x)dx−

∫
pdata(x) logθ(x)dx

= −S(pdata)− 〈log pθ〉data

(7)

rearranging the last line, we see:

〈log pθ〉data = −S(pdata)− δKL(pdata||ptheta) (8)

The equivalence follows from the positively of the KL-divergence and the fact that the

entropy of the data S(pdata) is constant. A key difference between GAN methods and

maximum likelihood methods stems from the fact that DKL(pdata||pθ) and DKL(pdata||pθ)

measure different things. A minimization of DKL(pdata||pθ) (ie. max likelihood) prioritizes
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models that have high probability where there is lots of data while ignoring the areas of

significant probability where there is no data. Minimizing DKL(pdata||pθ), by contrast,

focuses on preventing the model from predicting high probabilities where there is no data. In

other words, maximum likelihood methods often improperly “fill in” low-probability regions

between peaks in the data distribution.

Another appeal to studying KL divergence is that it has information theoretic interpre-

tations. From information theory, the average number of bits needed to compress a data

point x ∈ p is log2 p(x).[5] In order to communicate the density p to someone who already

knows q we have to communicate information which has a code length that is the differ-

ence in code lengths blog2 p(x)c − blog2 q(x)c for every data point. On expectation, this is

Epblog2 p(x)c − blog2 q(x)c ≈ δKL(p, q). Thus the KL divergence has a clear information-

theoretic meaning as the average number of bits required to communicate the density p to

someone who already knows q. Further theoretical justification for KL divergence based

on a set of three axioms (locality, coordinate invariance, and subsystem independence) has

been developed.[3]

KL divergence is always greater than zero and equals zero if and only if p(x) = q(x).

While KL divergence measures the similarity between two distributions, it violates both

symmetry δ(p, q) = (q, p) and violates the triangle inequality, δ(a, b) + δ(b, c) ≥ δ(a, c), so it

is not a metric.[4] Jenson-Shannon divergence is a metric and therefore is sometimes called

Jenson-Shannon distance.

Objective function 1 runs into issues in high dimensional spaces. Empirically, most high

dimensional real world data lies close to a low dimensional manifold. Therefore, when

training a GAN it becomes extremely unlikely that the initial generator distribution G(x)

overlaps with the target distribution – it would be like finding a needle in a haystack. If

there is little or no intersection between distributions, KL divergence become infinite and

the gradient signal becomes zero. JS divergence is better behaved in the sense that it

doesn’t become infinite when pθ(x) = 0 but suffers from the same problem of having zero

gradient when there is little or no overlap. This is a well known problem in the context of

unsupervised learning of distributions, both for GANs and VAEs. One solution is to add

additional noise to model, but in the context of images this makes the generated images

blurry.
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B. Other divergence measures

In its most general form, maximum mean discrepancy (MMD) is defined as:[6]

δMMD(p, q) = sup
f∈H

E[f(x)]− E[f(y)] (9)

Here x is an independent sample from p and y is an independent sample from q. In other

words, to calculate MMD, one searches the Hilbert space H for a function which maximizes

the difference in expectation of that function over samples from p vs samples from q. In

the case where H is a reproducing kernel Hilbert space, Gretton et al. showed that closed

form solutions to the supremum problem can be found.[7] In particular, for a given choice

of kernel function k(x,y) they found that:

MMD(p, q) = (Ep,q[k(x,x′)− 2k(x,y) + k(y,y′)])1/2 (10)

The unbiased estimator of this is:

MMD(p, q) =

(
1

N(N − 1)

∑
n6=n′

k(xn,xn′)− 2

MN

N∑
n=1

M∑
m=1

k(xn,ym) +
1

M(M − 1)

∑
m6=m′

k(ym,ym′)]

)1/2

(11)

where as before x,x′ are independent samples from p and y,y′ are independent samples

from q. As should be obvious from inspection of the equation, the construction of the kernel

function k(x,y) is critical to this method. Typically a Gaussian kernel is used, with the

width of the kernel becoming a hyperparameter. The MMD metric was applied to GANs

by Dziugaite, et al.[6] They view their “MMD-Nets” as GANs where the discriminator is

replaced with an MMD metric, which has a learned test function.

Arjovsky and Bottou (2017) introduced the Wasserstein distance, which is now one

of the most popular metrics.[8] The Wasserstein distance (also called the “Earth mover’s

distance”) can be informally understood by imagining the probability distribution to be a

pile of dirt, and the distance to a different distribution to be the number of buckets of dirt

that need to be moved, times the sum of the distances each bucket must be moved in order

to transform the first pile to the second. Mathematically this is expressed as :

W (p, q) = inf
γ∈Π(p,q)

E(x,y)∈γ||x− y||] (12)

Π(x, y) can be understood to be the “transport plan” explaining how much probability mass

we move from from x to y. To be a valid transport plan the constraints
∑

x Π(x, y) = q(y)
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and
∑

y Π(x, y) = q(x) must also hold. In other words, p and q must be marginals of Π(x, y).

The optimization problem to find the optimal transport plan can be solved with linear

programming. Unfortunately linear programming is intractable for everything but small

discrete-space problems, so some sophisticated math (the Kantorovich-Rubinstein duality

and other tricks) is required to transform to a dual problem which is tractable.

Other metrics include f -divergence[9] and total variation:

δ(p, q) = sup
x
∈ |p(x)− q(x)| (13)

Total variation is used in the energy based GAN (EBGAN) of Zhao, Mathieu, and LeCun.
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