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Supplementary Figure 1: Longitudinal polarization relaxation functions. Shown for 512 TIP4P2005/f
(left) and TTM3F (right) at 300 K.
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Supplementary Figure 2: Longitudinal (left) and transverse (right) relaxation times for 512
TIP4P/2005f. Computed for the underlying exponential of the relaxation. The points are interpolated by Akima
splines. The transverse relaxation time here is equal to the Debye relaxation time, which at k = 0 is ≈ 11 ps at 300

K for TIP4P/2005f. Experimentally it is 8.5 ps.[1]
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A. Dispersion relations and dampening factors
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Supplementary Figure 3: Longitudinal (top) and transverse (bottom) dispersion relations (circles)
and dampening factors (squares) for 512 TIP4P/2005f. These curves were obtained from a two peak (Debye

+ resonant) fit. In contrast to the longitudinal mode, the transverse mode is much more damped. However, the
dampening factor changes significantly with temperature, also in contrast to the longitudinal case, and at 250 K

becomes relatively small. Beyond 2 Å
−1

the peak due to the damped resonance starts to disappear so values beyond

3 Å
−1

are not shown.
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Supplementary Figure 4: Longitudinal (left) and transverse (right) dielectric susceptibility for a
system of 1,000 MeOH molecules. The longitudinal librational peak at ≈ 700 cm−1 clearly disperses with k,

while the transverse peak at ≈ 600 cm−1 disperses slightly with k. The higher frequency peaks exhibit no
dispersion. The static dielectric function ε(k, 0) has not converged properly in the transverse case, so the magnitude

of the peaks is not converged.
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Supplementary Figure 5: Longitudinal (left) and transverse (right) dielectric susceptibility for a
system of 1,000 acetonitrile molecules. The broad band which peaks at 100 cm−1 exhibits dispersion. We
hypothesize this dispersion is due entirely to the translational modes, however we cannot say for sure since the

librational and translational modes overlap in this region. The peak at ≈ 500 cm−1 is due to CCN bending. The
static dielectric function ε(k, 0) has not converged properly, so the magnitude of the transverse peaks is not

converged correctly, but the position of the peaks and dispersion can be seen.
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Supplementary Figure 6: Example fits of the transverse susceptibility of TIP4P/2005f at 300 K. Fit

with a Debye function and one damped harmonic oscillator at k = .25Å
−1

and k = 1.4Å
−1

. The residual show the
parts not captured by the fit.
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Supplementary Figure 7: Example fits of the longitudinal susceptibility of TIP4P/2005f at 300K. Fit

with a Debye function and one damped harmonic oscillator at k = .25Å
−1

(left) and k = 1.4Å
−1

(right). Two peaks
appear in the residual - the lower frequency peak is dispersive, having the same dispersion relation as the fitted
peak, suggesting that it is actually part of the dispersive peak lineshape that is not captured by our lineshape
function. The higher frequency peak in the residual is non-dispersive and is in the same location for both the

transverse and longitudinal susceptibility.

type ωL1 ωL2 ωL3 ref.

Raman

510 — 780 Bolla (1933) [2]
450 — 780 Walrafen (1962) [3]
400 — 700 Fukasawa, et. al. (2005)[4]
430 650 795 Carey, et. al. (1998)[5]
440 540 770 Castner, et. al. (1995)[6]
450 550 725 Walrafen (1990)[7]
424 550 725 Walrafen (1986)[8]
439 538 717 Walrafen (1967)[9]

infrared 380 665 — Zelsmann (1995) [10]
dielectric 420 620 — Fukasawa, et. al. (2005)[4]

Supplementary Table 1: Experimental peaks in Raman, dielectric, and IR spectra. This table shows the
correspondence between 3 peak Raman fits and 2 peak dielectric/IR fits to the librational region at 298 K.
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Supplementary Note 1

There are several different ways to decompose a spectra into contributions from molecules separated by distance R:
Kirkwood dipole-sphere method

This is the method we choose, which is a modification of the sphere-sphere method (see below). We start with the
time-correlation function of interest :

φ(t) =

〈∑
i

µi(0) ·
∑
j

µj(t)

〉
(1)

Here µ can be replaced with any dynamical variable of interest, for instance pT (k, t) or j(t). We omit the k dependence
for simplicity.

The most straightforward way is to limit the molecules around each molecule i to those in a sphere of radius R:

φ(t, R) =

〈∑
i

µi(0) ·
∑
j∈Ri

µj(t)

〉
(2)

This is similar to the method employed by Bopp & Kornyshev. During the the course of a simulation molecules
enter and leave each sphere, which creates noise, requiring longer averaging times. This can be improved by utilizing
a smooth cutoff function:

φ(t, R) =

〈∑
i

µi(0) ·
∑
j

Pij(t)µj(t)

〉
(3)

where

Pij =
1

1 + e(Rij−R)/D
(4)

Here D is a sharpness parameter determining the relative sharpness of the cutoff. We choose not to use smoothing
however, finding it to be unnecessary. The result is a spectra χ(k, ω,R) showing contributions from molecules up to
radius R. The resulting function exhibits the expected R→ 0 limit, yielding only the self contribution. In the R→∞
limit, the original full response function is recovered. This function can then be numerically differentiated to show
the contributions from shells of thickness ∆R centered at distance R.

Sphere-sphere method
Another method discussed by Heyden, et. al. (2010) is to study the autocorrelation of the total dipole moment of a
sphere of radius R centered around a reference molecule, and then average over each molecule in the system.[11]

φP (t, R) =
∑
i

〈
µPi (0) · µPi (t)

〉
(5)

where

µPi (t) = Ni(t)
∑
j∈Ri

Pij(t)µj(t) (6)

Heyden, et. al. recommend the normalization factor Ni(t) = (1 +
∑
j∈Ri P

2
ij)
−1/2 to normalize for number of

molecules in each sphere. This normalization factor is chosen so that in the bulk limit (R → ∞) the original full
response function is obtained (in that limit Ni = 1/

√
Nmol). In the limit R → 0 only the self-term contributes.

Results from this method must be interpreted with a bit of care since the calculation includes all cross-correlations
between molecules within the sphere centered around the reference molecule. We found that this method is more
sensitive to intermolecular correlations, in particular the H-bond stretching at ≈ 250 cm−1 (not shown). Altogether
though we found the results from this method are complementary with our results from the dipole-sphere method.

Spatial grid method
To achieve higher resolution, Heyden, et. al. also introduce a spatial grid method.[11] The method works by bining
the molecular dipoles into grid cells. To reduce noise caused by moleules moving in and out of bins the binning is
Gaussian, meaning the dipoles are smeared with a Gaussian function. Unlike the other methods the spatial grid
method does not yield the self part as R→ 0 so this limit requires special interpretation.
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Supplementary Note 2

Bopp & Kornyshev show that to get accurate results in k space it is important to use the polarization vectors for
each molecule rather than just the dipole moment. To calculate the polarization vector we use the method of Raineri
& Friedman.[12] We utilize the defining relation for the polarization:

∇ · P (r, t) = −ρ(r, t) (7)

When transformed into Fourier space this becomes:

ik · P (r, t) = −ρ(k, t) (8)

We introduce polarization vectors for each molecule pi(k) so that we have

P (k) =
∑
i

p
Nmol
i (k)e−ik·ri (9)

where

ik · pi(k) = −
∑
α

qαe
−ik·rαi (10)

The molecules are indexed by i and the atoms on each molecule are indexed by α. riα = ri(t)− rα(t) is the distance
from each atomic site to the center of mass of molecule i. Following Raineri & Friedman, we use the identity

ex = 1 + x

∫ 1

0

dsexs (11)

and taking into account the charge neutrality of each molecule we obtain

pi(k) = −
∑
α

qαrαi

∫ 1

0

dse−ik·rαis (12)

pi(k) =
∑
α

qαrαi
ik · rαi

(
eik·rαi − 1

)
(13)

The transverse part is then calculated as P T = k̂ × P , while the longitudinal component is PL = k̂ · P . The
longitudinal component can also be calculated more directly from:

k̂ · P =
iρ(k, t)

k
= PL (14)

This yields the following Kubo formula for the longitudinal part of the response:

χL(k, ω) =
β

ε0k2

∫ ∞
0

dt
d

dt
〈ρ(k, t)ρ∗(k, 0)〉eiωt (15)

For a system composed of point charges, the charge density is :

ρ(r, t) =
1

V

∑
i

∑
α

qiαδ(r − ri(t)− riα(t)) (16)

Again, the index i runs over the molecules while α runs over the atomic sites on each molecule. The charge density
in k-space becomes:

ρ(k, t) =
1

V

∑
i

∑
α

qαe
−ik·(ri(t)+riα(t)) (17)

Note that this can be Taylor expanded as:

ρ(k, t)

k
=

1

k

∑
i

∑
α

qα
∑
n

(−ik · riα(t))n

n!

= M(k, t) + Q(k, t) + O(k, t) + · · ·
(18)
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Here M(k, t), Q(k, t), O(k, t) are contributions due to the molecular dipoles, quadrupoles and octupoles. In the limit
k → 0 it from supplementary equation 15 it can be seen that only the dipole term contributes to the susceptibility.
In the k → 0 limit one obtains

χL(k, ω) ≈ β

3ε0V

∫ ∞
0

dt
d

dt
〈ML(k, t) ·M∗

L(k, 0)〉eiωt (19)

with

ML(k, t) =

Nmol∑
i=1

k̂ · µi(t)eik·ri(t) (20)

This type of expression has been used previously as an approximate expression at small k.[13] However, Bopp &
Kornyshev show quite convincingly that for water the higher order multipole terms are very important, even at the
smallest k available in computer simulation.[14] Neglect of the higher order terms leads to severe consequences at
large k, and one will not recover the physical limit lim

k→∞
χL/T (k) = 1 unless higher order terms are included.
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