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Abstract—Due to its high computational speed and accu-
racy compared to ab-initio quantum chemistry and forcefield
modeling, the prediction of molecular properties using machine
learning has received great attention in the fields of materials
design and drug discovery. A main ingredient required for
machine learning is a training dataset consisting of molecular
features—for example fingerprint bits, chemical descriptors, etc.
that adequately characterize the corresponding molecules. How-
ever, choosing features for any application is highly non-trivial,
since no “universal” method for feature selection exists. In this
work, we propose a data fusion framework that uses Independent
Vector Analysis to uncover underlying complementary informa-
tion contained in different molecular featurization methods. Our
approach takes an arbitrary number of individual feature vectors
and generates a low dimensional set of features—molecular
signatures—that can be used for the prediction of molecular
properties and for knowledge discovery. We demonstrate this on
a small and diverse dataset consisting of energetic compounds
for the prediction of several energetic properties as well as for
demonstrating how to provide insights onto the relationships
between molecular structures and properties.

Index Terms—Data fusion, blind source separation, inter-
pretability

I. INTRODUCTION

Machine learning (ML) has recently been used for the
prediction of molecular properties and studies have shown
that it can provide accurate and computationally efficient
solutions for this task [1]–[5]. The prediction ability of a ML
model highly depends on the proper selection of a training
dataset, via feature vectors, that can fully capture certain
characteristics of a given set of molecules. A common way to
represent a molecule is through a string representation called
the Simplified Molecular-Input Line-Entry System (SMILES)
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string [6]. Although working directly with SMILES strings has
shown to be effective in some ML tasks [7], most of the ML
methods require vector or matrix variables rather than strings.

Basic classes of featurization methods that have been widely
used in the literature include cheminformatic descriptors,
molecular fingerprints, and custom graph convolution based
fingerprints, where each featurization method provides differ-
ent – though not necessarily unique – information about a
molecule.

Thus, it is important to find answers to the question ”how
can disparate datasets, each associated with unique featur-
ization methods, be integrated?” The question is motivated
by the desire to create automated approaches where data
generation techniques are integrable with ML models. Data
fusion methods [8], [9] may serve this purpose, since they
enable simultaneous study of multiple datasets by, for instance,
exploiting alignments of data fragments where there is a
common underlying latent space.

A naive approach could be to simply concatenate data
that has been generated by different featurization methods.
However, this typically leads to a curse of dimensionality, that
could affect the performance of a ML algorithm and make
it impossible to discover the features of greatest importance.
Therefore, selecting a model that generates a set of molec-
ular feature vectors by effectively exploiting complementary
information among multiple datasets is an important issue.

Blind source separation (BSS) techniques enable the joint
analysis of datasets and extraction of summary factors with
few assumptions placed on the data. This is generally achieved
through the use of a generative model. One of the most widely
used BSS techniques is independent component analysis (ICA)
[10], [11]. The popularity is likely because by only requiring
statistical independence of the latent sources it can uniquely
identify the true latent sources, subject only to scaling and
permutation ambiguities. However, ICA can decompose only
a single dataset. In many applications multiple sets of data
are gathered about the same phenomenon. These sets can
often be disjoint and merely misaligned fragments of a shared
underlying latent space. Multiple datasets could therefore share
dependencies. This motivates the application of methods that
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can jointly factorize multiple datasets, like independent vector
analysis (IVA) [11]. IVA is a recent generalization of ICA to
multiple datasets that can achieve improved performance over
performing ICA on each dataset separately.

In this paper, we propose a novel data fusion framework that
uses IVA to exploit underlying complementary information
contained across multiple datasets. Namely, we show that
information that has been generated by different molecular
featurization methods can be fused to improve learning of the
chemical relationships.

Note here that achieving perfect regression error is not the
the goal of this work. Instead, our goal is to determine how to
generate feature vectors by combining datasets from multiple
featurization methods to improve the learned response of the
data-fused model over the performance of the individual fea-
ture vectors treated separately. Particularly noteworthy is that
the proposed approach is completely unsupervised, parameter
free, computationally attractive when compared with existing
methods [5], easily interpretable due to the simplicity of the
generative model, and does not require a large amount of
training samples in order to achieve a desirable regression
error.

The remainder of this paper is organized as follows. In
Section (II), we provide a brief background on the IVA method
and the regression procedure. Section (III) provides the results
of the regression procedure and associated discussions. The
conclusions and future research directions are presented in
Section (IV).

II. MATERIALS AND METHODS

The BSS model is formulated as follows. Let X ∈ Rd×N be
the observation matrix where d denotes the dimension of the
feature vector and N denotes the total number of molecules.
The noiseless BSS generative model is given by

X = AS, (1)
where A ∈ Rd×P is the mixing matrix, and S ∈ RP×N is the
matrix that contains the sources that need to be estimated and
will be used as the new feature vector for the ML task. One
of the most widely used methods for solving the BSS problem
(1) is ICA and its basic assumption is that the source signals
are statistically independent [11]–[13].

By rewriting (1) using random vector notation, we have
x(n) = As(n), n = 1, . . . , N, where n is the sample index
denoting the nth molecule, s(n) ∈ RP are the unknown
sources that need to be estimated, and x(n) ∈ Rd are
the mixtures. Our interest is in dealing with overdetermined
problems where d > P . This can be reduced to the case
where d = P using a dimensionality reduction technique
like principal component analysis (PCA). For the purpose
of this work and for the rest of this paper we assume that
the samples of each unknown source are independent and
identically distributed and therefore, to simplify the notation
we drop the sample index n.

Although ICA has been shown to be very useful in many
applications, it decomposes a single dataset at a time. For
practical applications that involve more than one dataset one

could perform ICA separately on each dataset and align the
subsequent results. However, this approach could be consid-
ered suboptimal since performing ICA individually on each
dataset will ignore any dependencies that exist among them.

A. Independent Vector Analysis

It is common for datasets that have been generated from dif-
ferent featurization methods to have some inherent dependence
among them. IVA generalizes the ICA problem by allowing
for full exploitation of this dependence leading to improved
performance beyond what is achievable by applying ICA
separately to each dataset. Additionally, IVA automatically
aligns dependent sources across the datasets, thus bypassing
the need for a second permutation correction algorithm.

IVA is similar to ICA, except that now we have K datasets,
x[k], k = 1, ...,K where each dataset is a linear mixture
of N statistically independent sources. Under the assumption
that PCA preprocessing results in d = P , the noiseless IVA
model is given by x[k] = A[k]s[k], k = 1, ...,K, where
A[k] ∈ RP×P , k = 1, ...,K are invertible mixing matrices
and s[k] = [s

[k]
1 , ..., s

[k]
P ]> is the vector of latent sources for

the kth dataset. In the IVA model, the components within
each s[k] are assumed to be independent, while at the same
time, dependence across corresponding components of s[k] is
allowed. To mathematically formulate the dependence across
components that IVA can take into account, we define the
source component vector (SCV) by vertically concatenating
the pth source from each of the K dataset as

sp = [s[1]p , ..., s[K]
p ]>, (2)

where sp is a K-dimensional random vector. The goal in
IVA is to estimate K demixing matrices to yield source
estimates y[k] = W[k]x[k], such that each SCV is maximally
independent of all other SCVs. It should be mentioned that
dependence across datasets is not a necessary condition for
IVA to work. In the case where this type of statistical property
does not exist, IVA reduces to individual ICAs on each dataset.

The IVA cost function can be defined in a similar manner as
ICA. However, the optimization parameter is not just a single
demixing matrix W as in the ICA case, but a set of demixing
matrices W[1], . . . ,W[K], which can be collected into a three
dimensional arrayW ∈ RP×P×K . The IVA objective function
is given by

JIV A(W) =

P∑
p=1

H(yp)−
K∑
k=1

log
∣∣∣det(W[k]

)∣∣∣−H(x[1], ...,x[K]),

(3)
where H(yp) denotes the differential entropy of the estimated
pth SCV and the term H(x[1], ...,x[K]) is a constant parameter
where it can be treated as a constant for optimization purposes.

By definition, the term H(yp) equals
K∑
k=1

H(ykp) − I(yp),

where I(yp) denotes the mutual information within the pth
SCV. Therefore, it can be observed that minimization with
respect to each demixing matrix W[k] of (3) automatically
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increases the mutual information within the components of
a SCV, revealing how IVA exploits this type of statistical
property. It can be seen that without the mutual information
term, the objective function (3) is equivalent to performing
independent ICA separately on each dataset. For more infor-
mation about the derivation of the IVA cost function and the
optimization scheme, we refer the reader to [14].

B. Feature Extraction and Regression Procedure

The regression process consists of three stages. In the
first stage, N molecules are randomly sub sampled in order
to generate training and testing datasets, Xk

Train and Xk
Test

respectively, for each k = 1, . . . ,K.
In the second stage, the mean from each dataset is removed

so all datasets are centered and PCA is applied to each Xk
Train

using an order P . This implies that the signal subspace con-
tains the components that have higher variance. Then for each
k ∈ {1, . . . ,K}, we generate X̂k

Train ∈ RP×NTrain and by ver-
tically concatenating each X̂k

Train we form a three dimensional
array X̂Train ∈ RP×N×K . IVA is performed on X̂Train re-
sulting in a set of demixing matrices, {W1, . . . ,WK}, where
each Wk ∈ RP×P . Using the demixing matrices we generate
Yk

Train = Wk(X̂k
Train)

> for each k = 1 . . . ,K and the
training dataset YTrain is formed by vertically concatenating
the SCVs, y1, . . . ,yP . Note here that YTrain contains all the
extracted molecular signatures for each training molecule and
will be used for training the regression model.

The testing dataset is generated by removing the mean from
each testing dataset and by using the PCA training transfor-
mation from the training phase, we generate X̂k

Test, k =
1 . . . ,K. Each of the demixing matrices from the training
phase is used to create testing datasets Yk

Test ∈ RP×NTest

by Yk
Test = Wk(X̂k

Test)
> for each k = 1 . . . ,K. Finally, the

testing dataset is formed by vertically concatenating the testing
SCVs. Similar to the training phase, YTest will contain all the
molecular signatures for all testing molecules.

In the third stage, we train the regression model using
(YTrain)

>. Here, the specific form of the regression function
is unimportant. But to demonstrate a concrete example, we
use kernel ridge regression (KRR) with a Gaussian kernel,
which follows from previous work [3] and [1]. Once the
regression model has been trained we evaluate its performance
by using the unseen data (YTest)

>. For all of the experiments,
hyperparameter optimization and model training and testing
is done using a nested cross validation scheme. In the inner
loop, the length scale parameter of the Gaussian kernel and
the regularization parameter are optimized using grid search
selection using 80% of the data to train the model and another
10% for validation. The remaining 10% is held out as a test
set to estimate performance after hyperparameter optimization.
The outer loop is done five times, corresponding to five folds.
This entire process was repeated 30 times (with shuffling
before each iteration) to generate well-converged statistics.

C. Data Sources and Methods

While modern deep learning methods have demonstrated
superior performance for the prediction of molecular proper-
ties [15], [16], they require a large amount of data in order
to effectively work and due to their mathematical nature they
lose the ability to provide interpretable results. In this work, we
use a small and diverse dataset in order to demonstrate that
our proposed method does not require many training points
in order to achieve desirable performance while retaining the
possibility of interpreting the generated features to discover
relationships between molecular structures and properties. For
more numerical experiments using different types of molecules
and properties we refer the reader to [17].

Our energetics dataset consists of 109 energetic compounds
with properties computed by Huang and Massa [18] and
261 energetics related compounds with properties computed
by Mathieu [19]. The 109 molecules are from ten distinct
compound classes and models trained on it should be relatively
general in their applicability. Therefore, the diverse nature of
those data points enable us to demonstrate that our proposed
method is applicable to a wide range of candidate energetic
molecules. Huang and Massa calculated properties using a
combination of DFT calculations and Chapman-Jouguet the-
ory. Mathieu also used Chapman Jouguet theory but used
different simulation techniques. A few molecules appear in
both datasets and the properties calculated by both authors
differ slightly (both are included though in training).

The properties common to all 370 molecules include the
density, detonation pressure, and detonation velocity. From
the energetics data, we generate five observation matri-
ces, X1, . . . ,X5, using five different featurization methods:
Coulomb matrices eigenspectra (CME) [1], sum over bonds
(SOB) [3], custom descriptors [3], functional groups counts,
and Estate fingerprint [3]. The Coulomb matrix of a molecule
is specified by the 3-dimensional coordinates of the atoms as
well as their atomic charges. Since the Coulomb matrix is
not invariant under row or column permutations, the eigen-
spectra are used as a feature vector. The dimensionality of
the Coulomb matrix eigenspectra (d = 87) is set by the
molecule with the largest number of atoms in the dataset,
with smaller eigenspectra zero padded. Sum over bonds is
defined as a bond count and the feature vectors are generated
by first enumerating all of the bond types in the dataset
and then counting how many of each bond are present in
each molecule (d = 24). Similarly, the “functional group”
featurization is a sum of different functional groups which
can be counted using RDKit (the total number found in our
dataset was d = 55). Since most molecules only contain a
few different types of functional groups, this featurization is
very sparse. By a “descriptor” we mean any function that
maps a molecule to a scalar value. Descriptors may range
from simple atom counts to complex quantum mechanical
descriptors that describe electron charge distributions and other
subtle properties. For our work we several descriptors based
on stoichiometry which were deemed important for energetic
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materials including fractions of nitrogen, oxygen, and other
elements and oxygen balance. For this type of featurization
method we have (d = 21). Finally, the Estate fingerprint is
based on electrotopological state indices [20], which encode
information about associated functional group, graph topology,
and the Kier-Hall electronegativity of each atom. For the Estate
featurization method we have (d = 32).

III. RESULTS

The energetics dataset study examines (III-A) regression
performance with respect to five featurization methods and
(III-B) interpretability properties of IVA.

A. Regression Analysis

The first five rows in Table (I) show the MAEs for out-
of-sample predictions by the KRR model for each type of
featurization method. Errors are reported for the three prop-
erties associated with the energetics dataset. From (I), we see
that SOB provides the best results. Overall, Estate performs
the worst.

The last two rows of Table (I) list the MAEs when different
techniques have been used to generate molecular signatures for
training the regression model. The so-called Regular approach
denotes the procedure where the SOB, Fun.group, Estate,
Custom descriptors, and CME are vertically concatenated
resulting in d feature vectors of dimension 198. The IVA
approach shares the same feature extraction and regression
procedures described in (II-B). For the IVA approach the
resulting molecular signatures are of dimension 50. From
Table (I), we observe that IVA leads to an improved MAE
for all properties when compared to the “Regular” approach.
This is likely due to IVA’s ability to exploit the complementary
information that is shared across them.

We next evaluate the performance of the IVA approach as
a function of the number of datasets that are fused. Figure
(1) displays the MAEs of the density, detonation pressure, and
detonation velocity as a function of the number of featurization
methods used to train the regression model. We chose the
dimension of the vectors created by IVA to be P = 10 for
each dataset. The MAEs in Figure (1) show the improvement
in the regression error with an increasing number of fused
datasets. For the sake of comparison, the errors associated
with the Regular approach are also shown. When K = 2 the
median of the Regular approach when predicting the density
is lower than the IVA approach. However, IVA reduces the
variation in the MAEs which reveals how it produces compact
features. As expected, as the number of datasets is increased,
IVA performs better than the Regular approach, due to the
fact that IVA exploits complementary information among the
different featurization methods.

B. Knowledge Discovery

An important property of IVA is that it can also provide
chemical or physical interpretations through the estimated
mixing matrix. Once the demixing matrices, W[k] have been
estimated using the approach in Section II-B, we can estimate

TABLE I: Average MAE for different featurization methods
and different approaches to generate molecular signatures for
three target properties. The properties are density, detonation
pressure, and detonation velocity.

ρ(g/cc) P (GPa) Vdet(km/s)

SOB 0.037 2.125 0.258
Fun.group 0.075 3.873 0.451

Estate 0.082 4.022 0.456
Custom Desc. 0.069 2.643 0.275

CME 0.061 2.982 0.381
Regular 0.034 1.919 0.205

IVA 0.028 1.458 0.173

the mixing matrix by performing back-reconstruction. In order
to describe this procedure remember that before IVA is per-
formed, PCA is applied to each Xk using a presumed order P .
This provides the data reduction matrix Fk where each Fk is
formed by the eigenvectors with the first P highest eigenvalues
of the corresponding Xk. An estimate of the mixing matrix
Ak is computed as Âk = (Fk)†(Wk)−1, where (·)† denotes
the pseudo-inverse of a matrix.

Each row of the kth estimated mixing matrix therefore
represents the weights for the estimated sources of the kth
dataset. The values of the weights can reveal relationships
between certain characteristics of a given set of molecules.
To demonstrate this further we sort the magnitudes of the
weights on each estimated column of mixing matrix Âk and
the corresponding features used in the analysis.

From Table (II), we see the most representative features that
belong to each low dimensional molecular signature. Some of
these rankings make some chemical sense - for instance the
count of nitro groups is very important for energetic properties,
and the C : C bond (aromatic carbon bond) designates the
presence of a benzene ring. Molecules with benzene rings are
often planar which means they can often achieve higher crys-
talline density. In addition, it is interesting to observe that the
functional groups and types of bonds that are heavily weighted
indicate types of atomic groupings that are likely to appear
in as-yet unknown energetic molecules. For example bonds
involving oxygen and nitrogen are well known in a variety of
energetic materials (e.g., nitrate esters, and nitro compounds),
and the atomic groupings involving carbon and nitrogen are
commonly found in energetic aromatic compounds. This may
suggest that the weights, or some function of the weights,
may constitute a new descriptor that could be used in the
construction of new physically meaningful features for the
fused data. This proof of concept feature ranking shows that
our method remains interpretable, allowing for the illumination
of potentially interesting structure-property relationships and
also allowing for easier debugging of the model.

IV. DISCUSSION

The success of the proposed method raises several interest-
ing questions that can be explored in future work. Depending
on the nature of the data we can use or develop new algorithms
that take different statistical properties into account such as
sparsity [21]. In addition, we can also compare the regression
performance with other IVA algorithms or other methods such
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Fig. 1: Boxplots of the MAEs as a function of different number of datasets used in order to train the regression model. Boxplots
provide statistics for the MAE when combining different featurization methods. For instance, when K = 2 we combine 5!

2!3!

featurization methods yielding ten MAEs, similar for K = 3, and when K = 4 we combine 5!
4! featurization methods yielding

five MAEs.

Signature Fun.group Signature SOB Signature Custom Desc.
Enamine C:C nNO

Nitro C-N nCNO2

benzene N-O OB100

Azole N=O nNNO2

pyro ring C:N nNOC

TABLE II: The five most representative features for three extracted
molecular signatures that correspond to different featurization meth-
ods. The order of the features is from the highest to the lowest
magnitude.

as dictionary learning [22], [23] and non-negative matrix or
tensor factorization [24]. Lastly, order selection techniques can
be used to determine the order of the reduced IVA space.
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