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Abstract
Purpose: Early detection and size quantification of renal calculi are important
for optimizing treatment and preventing severe kidney stone disease.Prior work
has shown that volumetric measurements of kidney stones are more informative
and reproducible than linear measurements.Deep learning-based systems that
use abdominal noncontrast computed tomography (CT) scans may assist in
detection and reduce workload by removing the need for manual stone volume
measurement. Prior to this work, no such system had been developed for use
on noisy low-dose CT or tested on a large-scale external dataset.
Methods: We used a dataset of 91 CT colonography (CTC) scans with manu-
ally marked kidney stones combined with 89 CTC scans without kidney stones.
To compare with a prior work half the data was used for training and half for
testing. A set of CTC scans from 6185 patients from a separate institution with
patient-level labels were used as an external validation set. A 3D U-Net model
was employed to segment the kidneys, followed by gradient-based anisotropic
denoising, thresholding,and region growing.A 13 layer convolutional neural net-
work classifier was then applied to distinguish kidney stones from false posi-
tive regions.
Results: The system achieved a sensitivity of 0.86 at 0.5 false positives per
scan on a challenging test set of low-dose CT with many small stones, an
improvement over an earlier work that obtained a sensitivity of 0.52. The stone
volume measurements correlated well with manual measurements (r2 = 0.95).
For patient-level classification, the system achieved an area under the receiver-
operating characteristic of 0.95 on an external validation set (sensitivity = 0.88,
specificity = 0.91 at the Youden point). A common cause of false positives were
small atherosclerotic plaques in the renal sinus that simulated kidney stones.
Conclusions: Our deep-learning-based system showed improvements over a
previously developed system that did not use deep learning, with even higher
performance on an external validation set.
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1 INTRODUCTION

People living in the United States have approximately
a 9% lifetime risk of developing kidney stone disease,

© 2022 American Association of Physicists in Medicine. This article has been contributed to by US Government employees and their work is in the public domain in
the USA.

also known as urolithiasis or nephrolithiasis.1 Although
X-ray, ultrasound, and computed tomography (CT) may
all be used to detect kidney stones,CT is by far the most
common imaging modality employed owing to its high
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sensitivity and specificity (reported at 96% or higher).2

Emergency room visits due to kidney stones are very
common3 and nearly doubled from 1992 to 2009, when
the number of visits reached around 1,000,000 per year
in the United States.4 Among patients who received a
diagnosis of kidney stones after visiting the emergency
department between 2007 and 2009, 71% had received
a CT scan4 The American College of Radiology’s Data
Science Institute has identified “Kidney stone detection
on CT” as an important AI use-case.5 AI systems may
have particular utility when it comes to detecting kid-
ney stones on scans performed for other reasons, such
as CT colonography.6 A 2010 study found that 8% of
patients who underwent CT colonography had asymp-
tomatic urolithiasis.6 Ultra lose dose CT (ULD-CT) pro-
tocols have also been developed specifically for kidney
stone screening and surveillance7–9 and ULD-CT can
be lower cost than renal ultrasound.8

A 2005 study estimated that the total direct and indi-
rect costs of nephrolithiasis was approximately $4.5 bil-
lion in 2000 in the United States and growing each
year.10 There is not much work on the cost effectiveness
of early-stage interventions; however, Saigal et al. esti-
mate that a 75% effective intervention that costs less
than $300 per patient per year would be cost-effective
at reducing healthcare expenditures.10 They note that a
shift away from expensive medications toward low-cost
treatment modalities such as increased water intake
and lemon juice11 could increase cost effectiveness.10

More work needs to be done but based on the work on
screening cost-effectiveness reported so far10,12 it is not
unreasonable to conclude that earlier detection of kid-
ney stones using CT, especially when done opportunis-
tically, could reduce healthcare expenditures.

Accurate measurement of stone volume, which can
only be done via CT, is important to determine the opti-
mal course of treatment.8 Stones that are small enough
have a high likelihood of passing spontaneously on their
own and therefore may not warrant costly treatment
expenditures.13,14 Selby et al. found that stone volume
but not stone diameter was a predictor of future symp-
tomatic events (HR 1.35 per quartile).15 Statistical cor-
relations have also been found between stone volume
and the chance of spontaneous passage13,14 and the
risk of perioperative complications during percutaneous
nephrolithotomy.16 The rate at which stones grow over
time may also inform treatment decisions as stones with
a higher growth rate may be judged at greater risk of
becoming symptomatic.

Detailed protocols for low-dose CT scanning for kid-
ney stones have been described by Planz et al. where
they argued that these should be preferred over X-ray
due to allow for volumetry.8 Although it was recently
shown that low-dose high-noise scans do not sig-
nificantly human diagnostic accuracy,17 no machine-
learning-based system has yet been tested with
ultra-low-dose scans.

Despite the relevance of stone volume to making
treatment decisions, accurate measurements of stone
size and/or volume are not always performed owing to
the added time required to make such measurements,
creating a value proposition for automated measure-
ment. A 2005 survey in the United Kingdom found that
15% of radiologists “guestimate” stone size rather than
making a digital measurement.18 It has been shown
that stone volume measurement is a more reproducible
measurement than stone diameter.8,19,20 For instance,
one study found an average of 26.3% interreader
variation in stone diameter versus close to 0% inter-
reader variation when using a semiautomated method
for stone volume measurement.20 One study found vari-
ation between radiologists depending on the window-
ing settings utilized while making the measurement,
with a soft tissue window setting leading to overesti-
mation of stone volume by an average of 57%.21 It
was been argued that stone volume provides a more
objective means for stone surveillance.19 Homayounieh
et al. have demonstrated that stone radiomics features
(most notably stone volume) are highly predictive of
future hydronephrosis, future stone burden,and invasive
treatment.22

Relatively few works have been published that tackle
the challenge of computer-aided detection of kidney
stones in CT.Lee et al.used texture- and intensity-based
features to train an artificial neural network to distinguish
kidney stones from vascular calcifications.23 Liu et al.
segmented the kidneys and then used total-variation
flow denoising followed by the maximal stable extremal
regions method to segment stones.24 Features from
the segmented stones were fed into an support vector
machine (SVM) classifier to classify kidney stones ver-
sus false positives, achieving a sensitivity of 60.0% at
an average of two false positives per scan.24 Längkvist
et al. performed thresholding at 250 HU and connected
components analysis followed by application of a con-
volutional neural network (CNN) to classify ureteral
stones versus false positive detections.25 A limitation
of this work is that their training data only consisted of
cases with very large and bright uretral stones and no
stone free cases were used in either training or testing.
The system achieved a 100% sensitivity but at an unac-
ceptably high false positive rate of 2.7 false positives
per scan. Parakh et al. developed a dual CNN system
for detecting stones in the kidney, ureter, and bladder.26

The system achieved a sensitivity of 0.873 and AUC of
0.954 for patient-level stone detection.26 A major limi-
tation of their work is that their system does not report
the number of stones detected or segment the stones
to measure the stone volume. Most recently, Cui et al.
have utilized a dual-stage 3D U-Net followed by sim-
ple thresholding and region growing to segment kidney
stones.The first 3D U-Net segments the kidneys to allow
a cropped box around each kidney to be generated.
The cropped box is fed into a second 3D U-Net that
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segments the renal sinus area, where most kidney
stones are located. The system achieved a sensitivity
of 96% with a false positive rate of 0.03 per patient
for detecting stones > 2 mm in diameter (volume >

4.18 mm3).27 A major weakness of their system is their
threshold-based detection system that leads to many
false positives on low-dose CT scans.

To summarize or survey of existing work,no fully auto-
mated system has been demonstrated that obeys these
necessary desiderata of providing fully automated and
accurate stone detection and segmentation and the abil-
ity to work with noisy scans and small stones. Detect-
ing small stones is of particular importance, given that
early treatment greatly reduces healthcare expenditures
and patient’s quality of life. The importance of stone
volume measurement (as opposed to linear measure-
ment) has been neglected in the recent works on auto-
mated kidney stone detection, even though it has been
shown to be highly correlated with patient outcomes.
Another major deficiency of the works reported so far is
that none of the works test their system on an external
dataset.25–27 In this work, we seek to meet what is actu-
ally needed for clinical use—a robust system validated
on a large dataset capable of detecting and segmenting
small stones on both noisy CT (the type of CT often used
for kidney stone screening) and less noisy CT taken for
CT colonography (for opportunistic detection).

2 DATASET PREPARATION

The dataset used for initial training and testing is the
same used by Liu et al.24 The dataset, which we des-
ignate as NNMC-CTC, is a subset of a larger dataset
of 1186 CT colonography (CTC) scans from three
institutions.28 The images were selected as images
containing kidney stones based on the extracolonic
findings information, and the presence of stones was
verified as described in Ref.24.Each patient was admin-
istered an oral contrast agent and scanned during a
single breath hold using a four- or eight-channel CT
scanner (General Electric Light Speed or Light Speed
Ultra). CT scanning parameters included in-plane
resolution of 0.55–0.75 mm, 1.25–2.5 mm section col-
limation, 1 mm reconstruction interval, and 120 kVp.
Many of these images have a large amount of quantum
noise. In prospective readings by experienced radiolo-
gists, 91 patients were reported to have renal calculi in
the extracolonic findings. A radiologist with 6 years of
experience with kidney stone detection (E.B.T.) marked
the coordinates for all the stones in these 91 cases and
their findings were double checked by a second radi-
ologist with 20 years of experience with kidney stone
detection (R.M.S.).The renal calculi volumes were mea-
sured using a commercially available coronary artery
calcium scoring tool (Vitrea Core fX v6, Vital Images,
Minnetonka, MN). The settings employed for volume

F IGURE 1 Stone volume distribution for the NNMC-CTC test set.
The test set is challenging due to the combination of noisy images
and 21 stones with volumes < 5 mm3

measurement were a lower threshold of 130 HU and a
lower pixel threshold of 3 pixels, as recommended by
Patel et al. to assess the volumes of calculi on noncon-
trast CT images.20 In our literature survey, we found that
a lower threshold of 130 HU is the most common choice
for measuring stone volume,15,24,29 with a minority of
studies using either 200 HU14 or 250 HU.25,30

In addition to the scans of 91 patients with kidney
stones, 89 patients without kidney stones were chosen
from the remaining CTC images as negative examples.
The dataset of 180 images was split evenly into training
(N = 90) and test (N = 90) sets. The splitting was done
to replicate the splitting used previously by Liu et al. as
closely as possible.24 There were 97 kidney stones in
the training dataset and 77 in the test dataset. The dis-
tribution of stone sizes in the test dataset is shown in
Figure 1. The average stone size was 44.69 mm3 and
the range of stone sizes was 1–433 mm3.

To validate our system on a newer dataset, we used a
set of 12,351 CTC images from the University of Wis-
consin Medical Center.31 The scans were helical CT
(General Electric Discovery Series) taken with in-plane
resolution of 0.45–0.75 mm, 0.75 or 1 mm reconstruc-
tion interval, 1.25 mm slice thickness, and 120 kVp (a
few scans had slice thicknesses of 1.5 or 3 mm). One
scan was removed due to data corruption, three scans
were removed for being decubitus or prone rather than
supine, and 6166 scans were removed due to lack of
extracolonic findings information, leaving 6185 scans.To
isolate the scans with kidney stones, we searched the
extracolonic findings notes for at least one of the follow-
ing keywords:“kidney stone,”“kid stone,”“nephrolithiasis,”
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F IGURE 2 (Top) Intermediate outputs from a randomly selected case with kidney stones. On the far left, the kidney segmentation and CT
are visualized with a window between −50 and 150 HU. The middle panel shows the CT after denoising. The right panel shows the detections.
The blue detection (magnified) is classified as a false positive by the CNN, whereas the green and red detections are classified as true positives
(bottom). The kidney stone detection system utilized in this work (top) versus the 2014 system previously developed in our lab (below)24

“renal stone,” “renal calculi,” “renal calculus,” and “renal
calc.”Among the patients with extracolonic findings infor-
mation, 841 had E-RADS scores reported for at least
one extracolonic finding of a kidney stone. For patients
having multiple scans with extracolonic findings,we took
the first scan and ignored the rest. Altogether we found
755 patients (12%) with keywords indicating a kidney
stone and 5381 patients assumed to be without stones.
Some extracolonic findings were categorized based on
the criteria laid out in the CT Colonography Reporting
and Data System (C-RADS).32 In particular, categories
E3 (“Likely Unimportant Finding, Incompletely Catego-
rized”) and E4 (“Potentially Important Finding”) were of
interest.7,32 Among those, there were 14 kidney stones
with Category E3 and seven kidney stones with cate-
gory E4. Retrospective analysis of all images employed
was approved by the local Institutional Review Board
and the informed consent requirement was waived.

3 METHODS

Conceptually, the system is similar to the one devel-
oped by Liu et al. in 201424 but with several important
updates and simplifications. A diagram comparing both
systems is shown in Figure 2. To segment the kidneys,
we use a 3D U-Net33 model developed previously,34

which was trained on an in-house dataset of 56 cases
with ground truth segmentations. Details of the 3D U-
Net architecture and training procedure can be found
in previous work.34,35 A connected components analy-

sis is applied to the 3D U-Net segmentation to isolate
the two largest objects that helps remove spurious seg-
mentations outside the kidneys.We use the original scan
thickness 1.0 mm for the NNMC-CTC dataset and 1.0–
1.25 mm for the UW-CTC dataset, even though resam-
pling to thicker slices would reduce image noise. This
decision was informed by a number of studies from 2000
and onward that have shown that thicker slices lead to
less accurate size measurements due to the partial vol-
ume effect.29,36–38 In studies with ground truth stones
embedded in phantoms, larger slice thicknesses lead to
a decrease in both the measured size and maximum
intensity of stones.36,37 Additionally, slice thicknesses
greater than 3 mm can lead to small stones (<3 mm
diameter) being missed.37,39 On the basis of these find-
ings, Kambadakone et al. recommend the use of thin
slices (0.75–1.5 mm) for accurate kidney stone detec-
tion and size quantification.40 To keep the radiation dose
low with thinner slices, the tube current must be lowered,
resulting in a noisier scan.However,as noted in the intro-
duction, this does not hinder diagnosit accuracy.17

To denoise the images, two methods were tested
head-to-head on a few training data cases—
denoise_tv_chambolle() as implemented in the Python
library Scikit-Image and CurvatureAnisotropicDiffu-
sionImageFilter() as implemented in ITK. For further
elaboration on the pros and cons of different denoising
methods, see our prior work.24 Denoising is performed
iteratively until the number of connected components
is less than 200 (this lowers the computational burden
at later steps as the CNN must be applied to each
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F IGURE 3 Validation F1 score during training for four models that were tested to classify kidney stones versus false positive detections.
The 13 layer CNN with box size 24×24×24 was chosen because it had the highest validation F1 score

connected component). Then threshold (130 HU) is set
on the denoised image, followed by connected compo-
nents analysis. Next, region growing of each connected
component is performed on the original CT with a lower
threshold of 130 HU to replicate the manual method for
segmentation. We hypothesize that this low threshold
helps compensate slightly for the effects of partial vol-
ume averaging and better replicates the recommended
manual technique.41

After region growing, any regions that are touching
are joined together and a 24×24×24 voxel box centered
around each region on the original CT is fed into a 13-
layer CNN to classify kidney stones versus false pos-
itives. The CNN architecture is the same architecture
developed by Perez et al. for lung nodule classification42

and features batch normalization and dropout (dropout
rate = 0.65) in each layer.The source code for the archi-
tecture is available online.43 The CNN was trained on a
set of boxes generated by running the first stage on the
training scans. The boxes are reprocessed by clipping
to −200 to 1000 HU and rescaling, so the distribution
of intensities is centered at zero with standard devia-
tion of ± 1. The CNN was trained using data augmenta-
tion (random xyz jitter, random rotation, and random flip-
ping), the rectified-Adam optimizer,44 and a batch size
of 8. As false positives greatly outnumbered true posi-
tives, the true positives were reweighted in the training
sample, so there was a 50–50 mix during training. A val-
idation set of 400 boxes was used to monitor the F1
score during training, and the training was stopped as
soon as the validation F1 score plateaued. To ensure
reproducibility, we have published the Python source
code for our method on Github at https://github.com/
rsummers11/Renal-Calculi.

4 RESULTS

Some initial hyperparameter studies and ablation stud-
ies were performed by hand on a few training cases. For
instance,we tested three different thresholds for the max
number of detections, finding that it only made a dif-

ference in a few very noisy cases. Validation F1 score
for several CNN architectures are shown in Figure 3.
Among the architectures studied, the CNN with box size
24×24×24 performed best in the validation set, so that
architecture was used. We also tested several denois-
ing methods. First, we tested a variation flow denois-
ing method very similar to the one utilized by Liu et al.,
as implemented in the scikit-image Python package
(denoise_tv_chambolle()). We tested both 3D and 2D
implementations,finding them to give very similar results
visually on a few training cases. We found that the
method enhanced noise in a few situations and also arti-
ficially decreased the intensity of stones,often below the
130 HU threshold. We found that the anisotropic diffu-
sion filtering method developed by Perona and Malik,45

as implemented in ITK (GradientAnisotropicDiffusionIm-
ageFilter()), did not enhance noise and only reduced
the maximal stone brightness slightly, so we used that
method instead. Thresholds of 100, 130, and 150 HU
were tested. The differences were small but the 130 HU
threshold yielded the best free response operating char-
acteristic (FROC) curve in the test set.

The FROC curve and precision–recall curve on the
test set are shown in Figure 4. FROC curves versus
stone volume size are shown in Figure 5. Not surpris-
ingly, large stones (i.e., volumes > 27 mm3 / diameters
> 3.7 mm) are much easier to detect,with a sensitivity of
0.91 at a false positive rate of <0.05 per scan.A scatter-
plot comparing automated versus manual stone volume
measurements is shown in Figure 5 (Pearson’s r2 =

0.95). The relative average volume difference, defined
as the average of R = (Vpredicted − Vtrue)∕Vtrue, was
0.31 ± 0.92. This is an improvement over Liu et al., who
obtained an average R of 1.15 ± 1.27.24

The per-patient ROC curve for the CTC validation set
is shown in Figure 6. A total of 6163 patients had extra-
colonic findings in at least one scan. For patient-level
detection, the system achieved an AUC of 0.95 with a
sensitivity of 0.88 and specificity of 0.91 at the Youden
point. At the threshold corresponding to the Youden
point, the detector found 6/7 of the E4 stones (85%) and
11/14 (78%) of the E3 stones. The single E4 stone that

https://github.com/rsummers11/Renal-Calculi
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F IGURE 4 (Left) FROC curve on the NNMC-CTC dataset and (right) precision–recall curve

F IGURE 5 (Left) FROC curve versus stone volume. (Right) Automated versus manual stone volume measurements (with threshold =

130 HU)

was missed was an improper label (image had a uretral
stone, not a kidney stone). Using the sensitivity for the
E3 and E4 stones specifically and the specificity for the
detector overall, we find AUC of 0.86 for the E3 stones
and 0.91 for the E4 stones. These results make sense,
given that E4 are more severe stones.

Some randomly chosen true positive kidney stones
from the NNMC-CTC dataset are shown in Figure 7.
We performed an analysis of a randomly drawn sam-
ple of false positive and false negative detections in the
NNMC-CTC test set, obtained using a CNN classifica-

tion threshold of 0.5 (see random examples shown in
Figure 8).Out of 15 false positives,nine (50%) were due
to plaque in the renal sinus, one was due to a beam
hardening artifact from oral contrast, two were due to
image noise, two were due to likely missing labels, and
one was due to a metal object near the kidneys. The
two that were due to missing labels appeared to be very
small stones and possibly uric acid stones. Out of five
false negatives that were reviewed, they all were kidney
stones of distinct size (e.g.,>4–5 voxels) but less bright
(i.e., max HU < 400). These stones were detected in the
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F IGURE 6 ROC curve for patient-level kidney stone detection on
the UW-CTC dataset (N = 6,136). Also shown are the ROC curves
with sensitivity computed specifically for the kidney stones with E3
(N = 15) or E4 (N = 7) E-RADS scores

first stages of the detector but misclassified by the CNN.
It appears that it is difficult for the CNN to distinguish
plaques in the renal arteries from kidney stones and that
this issue was responsible for the majority of both false
positives and false negatives.We also looked at a few of
the false negatives that were responsible specifically for
the plateau in sensitivity at 0.92 observed in the FROC
and precision–recall curves (Figure 4). The plateau is

largely due to very a few small stones that are lost in
the denoising stage, and therefore, are never fed into
the CNN.

We also conducted an analysis of false positives and
false negatives in the UW-CTC dataset, again using a
threshold of 0.5, which corresponded to an operating
point with a sensitivity of 0.95 and a false positive rate of
0.16 (see Figure 9). Out of 15 false positives surveyed,
7/15 (47%) were actual kidney stones of varying size,
5/15 (33%) were due to image noise, one was due to a
rib bordering the kidney that was mistaken for a kidney
stone, one was due to beam hardening from oral con-
trast, and one was due to a large calcified tumor. Out of
10 false negatives cases that we looked at, 9/10 were in
very noisy images where we determined that the prob-
lem was with the stones being lost during the denoising
iterations. The 10th false negative case was the missed
E4 case mentioned above—it was a large ureteral stone
causing complete blockage of the left renal collecting
system. The uretral stone was improperly classified in
the extracolonic findings as a kidney stone.

5 DISCUSSION

We have developed a fully automated system for kid-
ney stone detection and volume quantification on CT.We
adopted a framework similar to the one previously devel-
oped in our lab in 2014,24 but with important updates
to the algorithms used in each step and a few sim-
plifications. The system achieved an AUC of 0.95 for
patient-level classification (Figure 6) on a large external

F IGURE 7 NMMC-CTC true positives: Four true positive examples are shown, with and without the segmentation overlay
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F IGURE 8 (Left) NMMC-CTC false positives: (a) metal object, (b–d) plaque, and (e–f) image noise. (Right) NMMC-CTC False negatives: (a)
False negative where there were four stones close together. One stone was lost after denoising. (b–d) These false negatives were all relatively
small and less bright stones (max HU < 400)

F IGURE 9 (Left) UW-CTC false positives. A random sample is shown. The detections are shown with the crosshairs. Top row—noise/rib,
noise, unlabeled stone, noise. Middle row—noise, calcified tumor, noise, and unlabeled stone. Bottom row—unlabeled stone, noise, unlabeled
stone, and bright region from beam hardening. (Right) UW-CTC false negatives. A random sample is shown and visualized with a soft tissue
window between −160 and 240 HU

validation set with 6185 scans,with many (≈ 50%) of the
false positives corresponding to stones not reported in
the extracolonic findings information. In the NNMC-CTC
test set, the improvement obtained over the 2014 work
was substantial both in terms of sensitivity (0.86 vs.0.52
a false positive rate of 0.5/scan) and accuracy of volume
measurement (Figure 4). A comparison of the failure
modes of the two systems indicates that this improve-
ment is mainly due to the use of a CNN rather than
a feature-based SVM for false positive detection. This
replicates a wealth of other studies that show that CNN-
based classifiers can perform much better than classi-
fiers that use hand-crafted features.

Systems such as the one developed and validated in
this work may offer clinical utility,particularly by providing
an automated measure of stone volume. Stone volume
measurements are time-consuming to obtain manually

but studies show that volume is more reproducible than
measures such as stone diameter.20

The current system could likely be simplified further
without loss in accuracy. For instance, the denoising
algorithm could be removed and a patch-based 3D U-
Net could be trained to segment kidney stones directly
within the kidney region. Such an approach would be
similar to the patch-based 3D U-Net that was recently
demonstrated for segmenting small aortic plaques.46

Two challenges encountered in this work were dealing
with large amounts of image noise and distinguishing
plaques from kidney stones. The issue of plaques caus-
ing false positives and false negatives has also been
noted in another recent work.27 Solving this problem
was outside the scope of this work but might be tackled
by assembling a joint training dataset to train a multi-
class deep learning system to detect and segment both
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plaque and kidney stones.By training directly on the task
of discriminating the two types of objects,such a system
would likely have a lower chance of mistaking plaque for
kidney stones or vice versa.

In conclusion, in this work,we showed that deep learn-
ing algorithm can detect renal calculi in noncontrast CT
scans with high sensitivity and specificity, including on
high-noise low-dose scans. The system was demon-
strated to generalize to both a hold-out test set and a
large external dataset. Systems such as this that can
detect kidney stones and provide accurate volume mea-
surements on a wide range of CT scans may have sub-
stantial clinical utility.Future work will study how systems
such as this can automatically track kidney stone volume
changes over time.47,48
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