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ABSTRACT

Accurate and reliable detection of abnormal lymph nodes in magnetic resonance (MR) images is very
helpful for the diagnosis and treatment of numerous diseases. However, it is still a challenging task due to
similar appearances between abnormal lymph nodes and other tissues. In this paper, we propose a novel
network based on an improved Mask R-CNN framework for the detection of abnormal lymph nodes in
MR images. Instead of laboriously collecting large-scale pixel-wise annotated training data, pseudo masks
generated from RECIST bookmarks on hand are utilized as the supervision. Different from the standard
Mask R-CNN architecture, there are two main innovations in our proposed network: 1) global-local at-
tention which encodes the global and local scale context for detection and utilizes the channel attention
mechanism to extract more discriminative features and 2) multi-task uncertainty loss which adaptively
weights multiple objective loss functions based on the uncertainty of each task to automatically search
the optimal solution. For the experiments, we built a new abnormal lymph node dataset with 821 RECIST
bookmarks of 41 different types of abnormal abdominal lymph nodes from 584 different patients. The
experimental results showed the superior performance of our algorithm over compared state-of-the-art

approaches.

© 2021 Published by Elsevier B.V.

1. Introduction

Detecting the location and size of abnormal lymph nodes
in magnetic resonance (MR) images is a crucial step in the
staging and treatment of cancer and lymphoproliferative disor-
ders (Amin et al., 2017). However, this task is time-consuming and
burdensome, easily creating room for human errors. Therefore, au-
tomatic detection and segmentation of abnormal lymph nodes are
highly desired for increasing work efficiency and reducing inter-
observer variability.

There are many studies devoted to the detection of abnormal
lymph nodes, but most are designed for specific regions, such as
sentinel (Liu et al., 2019; Kuwahata et al., 2020), axillary (Barbu
et al., 2010; Ha et al., 2018; Kitaizumi et al., 2020), and mediastinal
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lymph nodes (Oda et al., 2018). However, in daily practice, radiol-
ogists need to identify all abnormal lymph nodes appearing in the
entire scan to make an accurate diagnosis. Therefore, a universal
detection method to find all abnormal lymph nodes in MR images
will have great clinical value. To build an accurate universal ab-
normal lymph node detection model, there are many challenges to
deal with such as 1) low contrast and non-uniform intensity distri-
bution due to MR imaging characteristics, 2) large intra-class vari-
ability between different lymph node types making it hard to train
a robust model, and 3) high cost to collect large-scale accurate an-
notations for training.

In their routine work, radiologists generally annotate abnormal
lymph nodes using some type of bookmarks, such as arrows, lines,
diameters, or segmentations (Yan et al., 2018b). In these types, le-
sion diameter is a good balance between cost and accuracy. As part
of the RECIST guidelines (Eisenhauer et al., 2009), lesion diameters
consist of two lines for each abnormal finding, one measuring the
longest diameter of the finding and the other one measuring its
longest perpendicular diameter. For conciseness, we refer to the le-
sion diameter annotations as RECIST bookmarks. In this paper, we
propose a novel network that is trained starting from RECIST book-
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Fig. 1. The framework of our proposed method for abnormal lymph node detection
starting from RECIST bookmarks. For better observation, the original images have
been cropped around the bookmarks.

marks instead of full pixel-wise annotations, which eliminates the
need for additional manual annotation. Our framework is shown
in Fig. 1. To make full use of the RECIST bookmarks to supervise
the network optimization, we first generate pseudo masks using a
GrabCut-based method (Rother et al., 2012) in the training phase.
Then, we design a global-local attention network with multi-task
uncertainty loss to detect all abnormal lymph nodes in MR images.
Here, Mask R-CNN (He et al., 2017) is taken as the base model but
our proposed global-local module and multi-task uncertainty loss
can be easily introduced into any type of detector with little effort.

The main contributions of this work can be summarized as fol-
lows. First, we propose a novel network for the universal abnor-
mal lymph node detection in MR images, which has great clinical
value for the diagnosis of numerous diseases. Second, we design a
global-local context module to encode the image global and local
scale context information for the detection and utilize the chan-
nel attention mechanism to weight different contexts. Third, we
introduce a multi-task uncertainty loss to adaptively balance the
losses of different tasks, which can effectively alleviate the burden
for tuning the loss weights by hand. Finally, we build a large-scale
MRI abnormal lymph node dataset, which includes a total of 821
abnormal abdominal lymph nodes of 41 types from 584 different
patients. Moreover, 123 images with complete 3D volume annota-
tions are delineated by an experienced radiologist.

2. Related work

Object detection is a hot topic that has attracted much atten-
tion. Much effort in this field has been made in tasks such as
face, object, and medical lesion detection (Shen et al., 2017; Zhao
et al., 2019; Oksuz et al., 2020; Kong et al., 2020; Fan et al., 2020).
While our work concerns lymph node detection from RECIST book-
marks, we will first introduce the related works on general object
detection methods, then specific approaches for lymph node de-
tection, and finally lesion detection approaches based on RECIST
bookmarks.

2.1. General object detection

The goal of object detection is to determine the categories of
instances in the image and indicate their location with bounding
boxes. Instead of extracting carefully designed hand-crafted fea-
tures, deep learning has shown excellent performance in object

Medical Image Analysis 77 (2022) 102345

detection, which combines feature extraction and model optimiza-
tion in a unified end-to-end manner (Shin et al., 2016). The exist-
ing deep learning-based detectors can be divided into two classes:
two-stage and one-stage networks (Chiang et al., 2018; Liu et al.,
2020; Cao et al., 2020). The main difference between them is that
the two-stage network extracts a set of regions of interest (ROIs)
before making the detection while the one-stage network directly
performs detection based on dense samplings. Compared with the
two-stage network, the one-stage network achieves a higher infer-
ence speed.

The first two-stage detector was R-CNN (Girshick et al., 2014),
which combined region proposals with a convolutional neural
network (CNN). Based on R-CNN (Girshick et al., 2014), Fast R-
CNN (Girshick, 2015) sped up training and testing time by jointly
extracting object proposal features, training for classification, and
bounding box regression. Faster R-CNN (Ren et al., 2017) further
reduced the running time by learning the region proposals in-
stead of using the selective search algorithm. To effectively de-
tect objects while simultaneously generating semantic segmen-
tation masks, Mask R-CNN (He et al., 2017) extended Faster R-
CNN (Ren et al.,, 2017) by adding an object segmentation branch
to predict pixel-level labels. In object detection, detectors are usu-
ally subject to overfitting at training and quality mismatch at infer-
ence related to the used intersection over union (loU) threshold. To
address this problem, Cascade R-CNN (Cai and Vasconcelos, 2018;
2019) trained a multi-stage detector by sequentially increasing loU
thresholds.

The most representative  one-stage  detector  was
YOLO (Redmon et al, 2016), which achieved high detec-
tion accuracy while also being able to run in real-time. After
YOLO (Redmon et al., 2016), YOLOv2 (Redmon and Farhadi, 2017),
and YOLOv3 (Redmon and Farhadi, 2018) continuously improved
the detection accuracy while still achieving high inference speed.
The other representative one-stage detector was SSD (Single Shot
MultiBox Detector) (Liu et al, 2016b), which covered objects
using multiple feature maps at different resolutions and scales.
To address the foreground-background class imbalance problem,
Focal Loss (Lin et al., 2017) was designed for one-stage detectors
by down-weighting the loss assigned to well-classified samples.
To make Focal Loss applicable to the continuous form, Generalized
Focal Loss (Li et al., 2020) was further proposed.

To introduce different scale context information into detec-
tion, multi-scale mechanism is a popular method (Alansary et al.,
2019; Wang et al., 2020b). The two common choices for multi-
scale information extraction are the atrous spatial pyramid pool-
ing (ASPP) (Chen et al, 2017) and the pyramid pooling mod-
ule (PPM) (Zhao et al., 2017), which have many variants based
on them, such as (Wang et al, 2018; Piao et al, 2019; Guo
et al., 2020; Wang et al., 2020a). To further improve the robust-
ness and discrimination of learned features from different scales,
an attention-based fusion module is usually used. For example,
Shao et al. (2019) designed a new block that used dilated convo-
lution operations to learn multi-scale features and followed chan-
nel attention and spatial module to pay attention to more impor-
tant features. Cui et al. (2019) proposed a dense attention pyramid
network for the ship detection in SAR images which densely con-
nected convolutional block attention module to each concatenated
feature map from top to bottom of the pyramid network.

2.2. Lymph node detection

Abnormalities of lymph nodes in different body parts often
alert us to different diseases, such as infection, lymphoma, and
metastatic cancer (Roth et al., 2014; Liu et al., 2016a). Therefore,
it is of great value to detect abnormal lymph nodes. Unfortunately,
the great variations of lymph nodes in quantity, size, shape, and
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property make themselves difficult to identify and also cause the
bottleneck of constructing lymph node datasets, leading to fewer
studies on lymph node detection (Roth et al., 2014; Wang et al.,
2021). Instead of using deep learning-based detectors, most exist-
ing methods usually involve multiple separate stage methods for
lymph node detection. For example, Ma and Peng (2020) first de-
tected lymph node candidates using two preliminary computer-
aided detection systems and then used a CNN model to identify
true lymph nodes. Debats et al. (2019) fused the information from
multi-view input to reduce the false-positive predictions after ex-
tracting some pre-defined patches. Bouget et al. (2019) combined
U-net (Ronneberger et al., 2015) and Mask R-CNN to make se-
mantic segmentation and detection of mediastinal lymph nodes
for lung cancer staging. Carolus et al. (2020) first employed image
patches of different resolutions as candidates, and then trained a
3D CNN to detect enlarged potentially malignant lymph nodes. In-
stead of multi-stage methods, Zhu et al. (2020a) transformed the
detection problem into a segmentation problem and designed a
multi-branch detection-by-segmentation network for lymph node
gross tumor volume detection. However, the limited works are
mostly designed for lymph node detection in special regions be-
cause of the paucity of universal lymph node datasets. It is more
challenging to design a universal detector to detect abnormal
lymph nodes from the entire body.

2.3. RECIST-Based lesion detection

To reduce the annotation cost, there are some works pro-
posed to achieve lesion detection based on RECIST bookmarks. In
Yan et al. (2018a), Shao et al. (2019), Tao et al. (2019), they directly
utilized the bounding boxes drawn based on RECIST bookmarks to
achieve universal lesion detection. Compared with bounding boxes,
pixel/voxel-level pseudo mask may represent the lesion more ac-
curately, and an additional segmentation task under its supervi-
sion may be beneficial to the improvement of detection perfor-
mance. Therefore, Tang et al. (2019) and Yan et al. (2019) adopted
GrabCut to generate pseudo masks and taken Mask R-CNN as
the backbone to implement the detection and also segmentation.
Zlocha et al. (2019) also used GrabCut to generate the pseudo
masks from RECIST bookmarks by defaulting that most lesions are
convex outlines and proposed an improved RetinaNet for CT lesion
detection. Instead of generating bounding boxes or pseudo masks,
Xie et al. (2021) directly detected the four extreme points and a
center point of the RECIST bookmarks to achieve detection.

3. Methodology

The architecture of our network is shown in Fig. 2, which uti-
lizes 2D Mask R-CNN (He et al., 2017) as the base model and con-
sists of three main components: pseudo mask generation from RE-
CIST bookmarks, global-local attention, and multi-task uncertainty
loss.

3.1. Pseudo mask generation

For each RECIST bookmark, there are two lines to delineate the
corresponding abnormal lymph node, one measuring the longest
diameter of the lymph node and the other one measuring its
longest perpendicular diameter. For training the network, we can
directly generate the bounding box annotation from these two
lines, namely, by using their minimum bounding rectangle. How-
ever, due to the irregular shape variations of lymph nodes, this
simple manner may lead to inaccurate bounding box representa-
tion and will degrade the detection performance. Therefore, we
first generate pseudo masks from RECIST bookmarks to provide
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more accurate supervision for the model optimization in the train-
ing stage.

Here, we utilize GrabCut (Rother et al., 2012; Tang et al., 2018;
Wang et al., 2020c) to generate abnormal lymph node masks from
the RECIST bookmarks. To reduce the complexity, we first indicate
a square ROI centered on the midpoint of the longer diameter, with
a side length twice the length of that diameter. Next, we perform
GrabCut only inside the square ROI. In GrabCut, four classes of pix-
els should be initialized: obvious foreground pixels, obvious back-
ground pixels, possible foreground pixels, and possible background
pixels. The pixels on the two lines belong to obvious foreground
pixels. To initialize possible foreground pixels, we connect two ad-
jacent endpoints of two lines in turn with a straight line. The pix-
els inside the resulting diamond are treated as possible foreground
pixels. As it is difficult to determine the boundary between fore-
ground and background, we set all other pixels as the possible
background pixels. After initialization, we perform GrabCut to gen-
erate pseudo masks. In Fig. 3, a pseudo mask generation example
is given.

3.2. Global-Local attention

In our study, our goal is to achieve universal abnormal lymph
node detection in MR images which may cover different parts
across the whole body. The large intra-class variability between
different types of abnormal lymph nodes and the non-uniform in-
tensity distribution between MR images present challenges to train
a powerful detection model. In practice, a radiologist may make
decisions based not only on the appearance of particular lymph
nodes but also on broad and contextual information. To mimic this
capability of considering context, we propose a global-local atten-
tion module for abnormal lymph node detection.

As shown in Fig. 2, our global-local attention module is per-
formed for the final box classification and regression tasks of the
mask head, not for the semantic segmentation task. The main rea-
son for this is that the local scale itself has provided the broad and
contextual information for each pixel inside the box and the global
scale information is difficult to align with the local scale informa-
tion for each pixel, which may weaken the segmentation perfor-
mance. For each target ROI, both the fixed-size features of the tar-
get ROI (local, f!) and the whole image (global, f&) are extracted
using the RolAlign layer of Mask R-CNN. Instead of directly con-
catenating these local and global features together, we use an at-
tention mechanism inspired by Chen et al. (2016) to weigh the in-
formation from different scales to improve the feature robustness.
The detailed attention implementation is shown in Fig. 4. First, the
local and global feature maps (e.g. 7 x 7) are concatenated and
go through two convolutional layers. The first one is with kernel
size 3 x 3 and 256 output channels followed by a Batch Normal-
ization layer and a ReLU activation function while the second one
is with kernel size 3 x 3 and 2 output channels. After that, the re-
sulting feature maps (r) go through a Softmax layer to generate the
weights:

exp(r7)
LOXiexp(r)
where 17 is the resulting feature map of scale s at position i and S
is the total number of scales. Here, S = 2 for the case of one global
scale and one local scale. The final feature maps h for box regres-

sion and classification of the mask head are the weighted sum of
f! and f8:

hi,C :W: -ﬂlc+M/?-ﬂgc @)

(1)

where ¢ corresponds to the feature channel and wf is shared across
all channels.
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Fig. 2. Architecture of Global-Local Attention Network with Multi-task Uncertainty Loss. Since initial RECIST bookmarks can only provide coarse bounding box annotations,
pseudo masks are generated to provide more accurate supervision information in the training stage and make the segmentation task available. For abnormal lymph node
detection, a global-local attention module is introduced to improve the representation ability for better accuracy. To optimize the whole network, a multi-task uncertainty
loss to adaptively weigh different tasks is designed to alleviate the burden of tuning these weights by hand.
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pseudo mask (red).
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For the global context, we can adopt other sizes instead of
the whole image to encode the global information and also easily
extend single-scale implementation to multi-scale implementation
without any cost. The global size and the number of global scales
can be adaptively set according to the used different datasets. In
the experimental section, we conducted comprehensive studies to
verify the settings in our implementation.

3.3. Multi-Task uncertainty loss

Regardless of whether the detector is a one-stage method or a
two-stage method, it is usually a multi-task architecture, for exam-
ple, to perform both box regression and classification tasks. To op-
timize the whole network, a grid search method is often adopted

to tune the loss weight of each task for the best performance.
However, the grid search method means that the corresponding
network needs to be repeatedly trained many times. Such a tuning
strategy is expensive in practice, as the cost grows exponentially
with the number of tasks. Moreover, the grid search is only per-
formed on a limited set of points so the optimal weights may not
be achieved.

In our implementation, our network consists of five tasks sim-
ilar to the original Mask R-CNN (He et al., 2017). To alleviate the
burden of tuning the loss weights by hand, we introduce an adap-
tive strategy to learn the loss weights in terms of task uncertainty.
As described in Kendall et al. (2018), task uncertainty can capture
the relative confidence between tasks. Let f?(x) be the output of
a network with weights 6 on input x. In Kendall et al. (2018), the
regression likelihood is adapted as a Gaussian with mean given by
the model output:

pIf () = N (f* (%), 0%) (3)

with an observation noise scalar o. And the classification likeli-
hood is computed by squashing a scaled version of the model out-
put through a softmax function:

POIF (). ) = Softmax( £ () @

with a positive scalar o.

In the case of multiple model outputs, the multi-task likelihood
can factorise over the outputs by defining f? (x) as sufficient statis-
tics:

P Ykl 0 (0) = Pl £ (0) - Pkl 4 (%)), (5)

in which yj,....yg are the model outputs with respect to regression,
classification, etc.

For the original Mask R-CNN, there are five tasks, two for re-
gression and three for classification, modeled with Gaussian like-
lihoods and softmax likelihoods, respectively. And we denote y7,
and y;  as the outputs of the classification and regression tasks

of the box head respectively, y7j, yi , and yI . as the outputs of
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the classification, regression, and segmentation tasks of the mask
head respectively. For optimization, we can minimize the negative
log-likelihood of the model, and based on Eq. (3), (4), and (5), the
overall loss can be written as:
L= —log p(ycls =0, ybax ycls = Cm, ybox mask
= —logp(yh, =il ff (X)) - PWh | f0 (X))

POT = cal fO0)) - pyTIf (%)) - pYT o = Sml f7 (%))
= —logp(yL = |f (%)) —log p(¥},, |7 (%))

—log p(y™ = cm|f% (%)) — log p(y | f7 (x))

—log p(YT g = Smlf? (%))

¥y exp( £ ()

= — 57 log Softmax (., f* (x)) + log —————
(g exp(ff 00t

=smlf? (%))

+z%z||y{,ox—f9<x>||2+logaz 6)
o, exp(y ff (%)
— 7 log Softmax (i, f* (x)) +log ————"—
(Zq, exp(f] 00) 7
+37 [Whix = f7 ®11? + log oy
Xy, exp(5 [ (X))
-1 log Softmax(y™ .. f%(x)) + log ——5—""
0z mas o2
(g, exp(fy 00N
s (0) + 5307 L1 (0) + 35 L7 (0) + (,z.c (O)+
o7 L 0) + logm + logaz +logos + log<74 +logos
(0) + 5 L5 (0) + 2 L0 (0) + L LI (0)+

m k(@) + logm + logaz +logos + log<74 + logos — log 2

R

(72 L box cls box

= az Ccls cls

mas

in which 1 ¥ exp( 12f () ~ (X exp(ff (x)))t%2 is assumed to
simplify the optlmlzatlon objective. L], and Ly are the classifica-
tion and bounding box regression losses of the box head, respec-
tively. £7, £, and £ . are the classification, bounding box re-
gression, and mask segmentation losses of the mask head, respec-
tively.

Under Eq. (6), 015 can be seen as the relative weights of the
losses for each output. Large o means the output with large vari-
ance and the prediction has low confidence. Thus, the weight of
the corresponding loss should be decreased. The log(o) term can
be seen to regularize the loss weight. In this way, the loss weights
can be learned with the network parameters 6, which eliminates
the high cost of adjusting the weights manually by the grid search
method to achieve good performance.

4. Experiments
4.1. Dataset

Our dataset consists of abdominal MRI studies scanned between
Jan 2015 to Sep 2019 and downloaded from the National Insti-
tutes of Health’s Picture Archiving and Communication System.
Based on the MRI radiology reports, we collected a total of 584
T2-weighted image volumes from 584 different patients in which
there were 821 RECIST bookmarks from 41 types of abnormal ab-
dominal lymph nodes extracted in axial slices. These images range
in size from 256 ~ 640 x 192 ~ 640 pixels. The linear min-max
normalization is performed on each image separately to normalize
its intensity distribution to the range [0,1] due to the large study-
to-study intensity variations between different images. Specifically,
the top 1% intensity values in each image are first truncated to
the maximum of the remaining values to handle outliers. Then,
the values of each image get linearly transformed into a number
between 0 and 1 as [X;-min(X)]/[max(X)-min(X)], where X; is the
intensity value of the ith voxel in X. The whole dataset is randomly
divided into training (70%), validation (15%), and test (15%) sets at
the patient-level. Since the complete 3D annotations are unavail-
able, only the axial slices with RECIST bookmarks participate in
training. And for better evaluation, an experienced radiologist has
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helped to complete the accurate voxel-level 3D annotations of RE-
CIST bookmarks in the test set. So we have two test sets: one of
165 axial slices with RECIST bookmarks (RECIST slice test set) and
the other one of 123 volumes with accurate voxel-level annota-
tions which contains a total of 346 axial slices with lymph nodes
(3D volume test set). We mainly compare on RECIST slice test set if
no special mention while the training and test sets are in the same
annotation form.

4.2. Implementation details

We use 2D Mask R-CNN with Resnet50 as the backbone and
train our model starting from pre-trained COCO weights. The ini-
tial learning rate is set to 10~3 and the batch size is 4. Faster
R-CNN (Ren et al.,, 2017), YOLOv3 (Redmon and Farhadi, 2018),
Mask R-CNN (He et al., 2017), Cascade Mask R-CNN (Cai and
Vasconcelos, 2019), and DetectoRS (Qiao et al., 2020) are trained
on our dataset for comparison since they are representative and
outstanding detection methods. Moreover, all compared meth-
ods are trained starting from pre-trained COCO weights. For our
method, the loss weights are learned adaptively in the train-
ing process and for other compared methods, the grid search in
the range of [1,9] with an interval 2 for different loss weights
is used for selecting the optimal values for each method. All
methods are run 160 epochs on an Nvidia GeForce GTX TITAN X
card with 12GB memory. Our method, Mask R-CNN, and Cascade
Mask R-CNN are implemented based on the implementation of
Abdulla (2017). Faster R-CNN and DetectoRS are implemented with
MMDetection, an open-source object detection toolbox based on
PyTorch (Chen et al., 2019). YOLOv3 is based on the implementa-
tion of Huynh (2017).

To evaluate the detection performance, we report APs (Average
Precision) with IoU thresholds 0.25 (AP,5) and 0.50 (APsqg) because
lymph nodes are usually small in size. We also compute the sen-
sitivities with IoU thresholds 0.25 (SENys) and 0.50 (SENsq) at 5
false-positives (FPs) per image, which can reflect the balance be-
tween the detection accuracy and false detection findings well. Be-
cause some compared methods (YOLOv3, Faster R-CNN, and De-
tectoRS) only have bounding box predictions, AP evaluated using
mask IoU and bounding box IoU are both reported.

4.3. Comparison with the state-of-the-arts

In this subsection, we show the main comparison results be-
tween our method and the state-of-the-art methods. The detailed
performance comparison is reported in Table 1. These methods can
be divided into 2 groups: one-stage methods and two-stage meth-
ods. YOLOv3 is the only one-stage method while all other methods
are two-stage methods. We mainly compare the two-stage meth-
ods because two-stage detectors are usually more flexible and ac-
curate than one-stage detectors. These methods can be also cate-
gorized as with and without the segmentation task. We report AP
and sensitivity at 5 FPs per image evaluated using both mask loU
and bounding box IoU for detectors with the segmentation task
and only using bounding box IoU for detectors without the seg-
mentation task.

Our method achieved the best performance in seven of the
eight metrics (as shown in Table 1). For AP,s evaluated using
bounding box IoU, our method was only slightly worse than De-
tectoRS. For metrics evaluated using mask IoU, our method out-
performed Mask R-CNN and Cascade Mask R-CNN by large mar-
gins. For example, for sensitivity at 5 FPs, Mask R-CNN and Cas-
cade Mask R-CNN achieved poor performance while our method
improved the sensitivity by more than 17% (IoU: 0.25) and 11%
(IoU: 0.50). For metrics evaluated using bounding box IoU, we ob-
served similar trends.
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Table 1
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State-of-the-art comparison on our RECIST slice test set for detection. | means that the corresponding method has no segmentation mask prediction. The best

performance in each metric is indicated in bold.

Mask Box
Method

APys APsq SEN,5 SENsq APys APsq SEN>s SENsq
YOLOv3 (Redmon and Farhadi, 2018) / / / / 39.92 36.14 44,51 4335
Faster R-CNN (Ren et al., 2017) / / / / 49.55 42.02 53.18 46.24
Mask R-CNN w/o Pseudo Mask (He et al., 2017) / / / / 42.77 37.05 47.40 42.77
DetectoRS (Qiao et al., 2020) / / / / 55.97 47.14 58.38 50.87
Mask R-CNN (He et al., 2017) 45.28 41.97 52.02 48.55 46.49 40.76 53.18 48.55
Cascade Mask R-CNN (Cai and Vasconcelos, 2019) 51.26 43.54 41.04 34.68 51.79 4427 43.93 36.99
Ours 54.57 48.54 69.36 60.12 55.16 47.82 72.25 60.12

APys,50: Average Precision with the IoU threshold 0.25 or 0.50. SENys,50: Sensitivity with the IoU threshold 0.25 or 0.50 at 5 false-positives per image.

Fig. 5. Visualization of the detection results achieved by our method. Yellow box indicates the ground truth while green box indicates our prediction. Red number indicates

the predicted score. The lesion regions are zoomed in for better observation.

Fig. 5 provides the visualization of the results achieved by our
method. The examples show the difficulty of detecting abnormal
lymph nodes which are small relative to the field of view and quite
similar in texture to “normal” regions. Nevertheless, our method
can detect them reliably with few false-positive findings.

We also report the SEN,s and SENsq values of all methods on
the 3D volume test set evaluated using both bounding box IoU and
mask IoU as shown in Fig. 6. We can see that even if our method is

only trained on slices with RECIST bookmarks, the performance of
our model outperforms the comparison methods by large margins.

4.4. Ablation study
In our network, there are three main innovative modules pro-

posed to improve the detection ability: the pseudo mask, the
global-local attention, and the multi-task uncertainty loss. The
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(b) SENa2s using Mask IoU
70.00
60.00 63.78
50.00
40.00 43.11
30.00
20.00
10.00
0.00
Cascade Mask R- Ours Mask R-CNN  Cascade Mask R- Ours
CNN CNN
(d) SENso using Mask IoU
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Fig. 6. State-of-the-art comparison on 3D volume test set in terms of SEN,s and SENsq. (a) and (c) show the results evaluated using bounding box IoU and (b) and (d) show
the results evaluated using mask IoU. The number at the top of each bar indicates the corresponding metric value.

Table 2

Ablation study of our three modules: pseudo mask, global-local attention, and multi-task uncertainty loss. / means that the corresponding method has no

segmentation mask prediction.

Mask Box
Method

AP APsg SEN5 SENsg APys APsg SENs SENso
Ours 54.57 48.54 69.36 60.12 55.16 47.82 72.25 60.12
Mask R-CNN (He et al., 2017) 45.28 41.97 52.02 48.55 46.49 40.76 53.18 48.55
Mask R-CNN w/o Pseudo Mask (He et al., 2017) / / / / 42.77 37.05 47.40 42.77
Ours w/o Pseudo Mask / / / / 51.33 43.03 67.63 58.38
Ours w/o Global-Local Attention 52.33 47.36 65.90 58.96 52.94 46.71 66.47 59.54
Ours w/o Multi-task Uncertainty Loss 50.09 41.11 59.54 47.98 50.49 40.69 61.27 49.71

overall performance of our network has been verified by com-
parison with the state-of-the-art methods in the previous subsec-
tion. In this subsection, we study the effectiveness of each mod-
ule by discarding one of them at a time in the network training.
The corresponding results are reported in Table 2. The results of
Mask R-CNN with and without the pseudo mask are also shown in
Table 2 for reference.

By comparing Mask R-CNN with and without the pseudo mask,
we see that using the pseudo mask instead of the bounding box
makes the detection more effective, which is also verified by com-
paring our method with and without the pseudo mask. The effec-
tiveness of global-local attention and multi-task uncertainty loss
can be verified while the corresponding results achieve overall bet-
ter performance than Mask R-CNN.

To further demonstrate the effectiveness of the pseudo masks,
we reported the DSC (Dice Similarity Coefficient, %) and ASD (Av-
erage Symmetric Distance, mm) values by comparing the pseudo
masks with ground truth in 3D volume test set with accurate
voxel-level annotations. Specifically, the average DSC value is 85.8%
and the average ASD value is 0.82mm, which verify the effec-
tiveness of the generated pseudo masks. In addition, we gener-

ate bounding boxes based on the pseudo masks and the ground
truth masks respectively, and name them Pseudo bounding boxes
and True bounding boxes respectively. Then, we compare RECIST
bounding boxes (bounding boxes directly drawn from RECIST book-
marks) and Pseudo bounding boxes with True bounding boxes
respectively and use average IoU values to evaluate the perfor-
mance. In 3D volume test set, the average loU achieved by Pseudo
bounding boxes is 0.68 while 0.63 is achieved by RECIST bounding
boxes. The average IoU improvement of 0.05 proves that our gen-
erated pseudo masks can provide more accurate bounding boxes
for lymph nodes and then can better supervise the detection
task.

To further verify the effectiveness of our multi-task uncer-
tainty loss, we train our methods by setting the loss weights
manually. The detailed results are reported in Table 3. Since
there are 5 tasks in our model, it is hard to traverse all possi-
ble weight settings and we show only several representative set-
tings. Table 3 shows that the performance can benefit from ad-
justing the loss weights of different tasks on some metrics, which
verifies the necessity of using the optimal loss weights. Com-
pared with manual settings, our model with the multi-task uncer-
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Performance comparison between using our multi-task uncertainty loss and using the grid search method to set the loss weights. Mask R-CNN with equal
weights for different tasks is used as a baseline, and the metric that outperforms the corresponding baseline achieved by other settings is marked in bold.

Mask Box
Setting
APys APsp SENos SENsp APys APy, SENos SENsp
Multi-task Uncertainty Loss 54.57 48.54 69.36 60.12 55.16 47.82 72.25 60.12
M= AL = A=A =AM ] 50.09 4111 59.54 47.98 50.49 40.69 6127 4971
Me=10,A0 =am =Am =Am =1 48.79 40.28 61.85 49.71 48.79 39.13 62.43 50.29
Ay =10, AT, = AT =AM —3m 1 50.16 38.48 64.16 47.40 51.88 37.36 68.21 50.29
Ao = Ay = 10,41 = A —3m " 1 46.01 38.30 57.80 45.09 47.21 3727 6127 47.40
Mg =10,AL =A% =Am =27 =1 46.42 35.83 60.69 46.24 46.47 36.51 60.69 49.71
A =10, AT = AL, = A = Am =1 45.98 39.86 5029 4335 4724 38.96 52.02 43.93
A =10, AL, = AL = AT M 1 46.79 38.45 59.54 46.82 47.55 38.40 60.69 49.13
Am=Am o =Am o =10,AL =Al =1 49.11 41.36 62.43 52.02 49.59 39.10 63.01 52.60
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Fig. 7. (a) AP»s and APso achieved by using different global sizes; (b) SENys and SENsq achieved by using different global sizes; (c) AP,s and APsy achieved by adding
an additional global scale; (d) SEN,s and SENsq achieved by adding an additional global scale. Gs denotes the implementation using global size s and AGs denotes the

implementation with an addition global scale of size s.

tainty loss is overall better for all metrics, which can effectively
avoid the cost of the grid search method to find the optimal loss
weights.

4.5. Sensitivity to global scale size

To extract the global context, we use the whole image as the re-
ceptive field. Here, we use different global sizes to verify whether
our model is sensitive to this setting. To measure this sensitivity,
we set the global size to 0.10, 0.25, and 0.50 of the whole image
size separately. Different from using the whole image, the receptive
field of the compared global sizes is centered on the correspond-
ing target ROL Fig. 7(a) and (b) show the results under different
global sizes, in which the performance is evaluated using mask IoU.
We observed that our implementation is robust to different global
sizes since all global sizes achieve similar performance. But using
the whole image is more stable under different metrics. The main
reason for this may be that the whole image can provide a more

Table 4
Performance comparison on TCIA Lymph Node dataset. APy evaluated using
mask IoU is for evaluation.

Method Abdominal LN Mediastinal LN
nnDetection 47.0 50.0
nnUNetPlus 31.1 34.2
Ours 51.9 52.2

stable context compared with other scale sizes to identify the ab-
normal lymph node among different body parts.

4.6. Sensitivity to multi-global scale

In this subsection, we extend the global context from single-
scale implementation to multi-scale implementation by adding an
additional global scale to check whether more global information
represents better capability for detection. Similar to the settings
before, the size of the additional global scale is set to 0.10, 0.25,
and 0.50 of the whole image size, respectively. In Fig. 7(c) and (d),
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Ilustration of the results of other works using different datasets. #Patient and #LN denote the number of patients and lymph nodes, respectively. Recall@5.85FP
and Recall@9FP mean the recall at 5.85 and 9 false-positives per image, respectively. mRecall@0.10-0.50 means the mean recall at a precision range of [0.10,

0.50] with 0.05 interval.

Method #Patient #LN Recall@5.85FP Recall@9FP mRecall@0.10-0.50
Bouget et al. (2021) 120 1178 52.4 - -
Bouget et al. (2019) 15 300 - 74.2 -
Yan et al. (2019) 141 651 - - 72.5
Zhu et al. (2020a) 141 651 - - 78.2
Zhu et al. (2020b) 141 651 - - 74.7
Ours 584 821 73.9 73.9 90.3
Table 6
Sensitivity (%) at different FPs per sub-volume on the manually labeled test set of DeepLesion.

Method AFP Multi-dataset Proposal fusion MAM FPR 0.125 0.25 0.5 1 2 4 8 Avg.

Yan et al. (2019) 11.2 16.3 24.3 32.8 41.6 50.9 60.1 339

Yan et al. (2020) v 15.8 214 27.9 35.9 43.4 52.0 60.9 36.8

v v 14.3 21.5 28.2 35.1 44.4 53.9 63.4 373

v v v 15.9 22.8 30.1 37.7 46.7 56.6 66.1 394

v v v 18.3 26.3 34.1 44.8 55.5 65.4 75.4 45.7

v v 22.0 284 36.6 45.2 55.0 65.5 75.0 46.8

v v v 213 28.3 37.1 46.7 55.5 66.2 75.9 47.3

v v v v 21.6 29.9 37.6 46.7 56.7 65.8 75.3 47.6

v v v v v 23.7 31.6 40.3 50.0 59.6 69.5 78.0 50.4

Ours 0.8 34 7.2 13.1 27.1 49.3 67.3 24.0

AFP, Multi-dataset, Proposal fusion, MAM, and FPR are the proposed modules in Yan et al. (2020). AFP: Anchor-free proposal network; MAM: Three missing

annotation mining strategies; FPR: 3D false positive reduction network.

the performance evaluated using mask IoU with different sizes of
additional global scales is reported. The results with an additional
global size of 0.10 are overall better than the others. But the per-
formance is slightly lower for the additional global size of 0.25 or
0.50 relative to the whole image scale. The main reason may be
that the neighborhood context provided by the global sizes of 0.25
and 0.50 provide a larger neighborhood context which has a large
overlap with the whole image context and may bring redundancy
that weakens the effectiveness of the global-local attention mod-
ule.

4.7. Comparison with other lymph node detection methods

We further verify the effectiveness of our method by conduct-
ing another comparison on a public lymph node dataset, TCIA
Lymph Nodes?, marked by radiologists at the National Institutes
of Health, including a total of 388 mediastinal lymph nodes in CT
images of 90 patients and a total of 595 abdominal lymph nodes
in 86 patients (Roth et al., 2014). Two state-of-the-art methods
are used for comparison, nnDetection and nnUNetPlus (a modified
nnUNet for detection) (Baumgartner et al., 2021), AP with the mask
IoU threshold 0.10 (APg19) is used to be consistent with the re-
ported performance. The detailed results are shown in Table 4. The
better performance of our method demonstrates the advantages of
our method.

Moreover, we also illustrate our results along with the reported
performance of other lymph node detection methods using differ-
ent datasets, including (Bouget et al., 2019; Yan et al,, 2019; Zhu
et al.,, 2020a; 2020b; Bouget et al., 2021). Since these approaches
used different metrics, we recalculate our results for a fair com-
parison and the corresponding performance is listed in Table 5.
We can see that our method can achieve better performance than
other methods, except that our Recall@9FP is slightly lower than
(Bouget et al., 2019). And the largest number of patients and the
smallest number of lymph nodes per patient indicate that our
dataset is more diverse and more challenging.

2 https://wiki.cancerimagingarchive.net/display/Public/CT+Lymph+Nodes

4.8. Comparison on DeepLesion

We also experimented on a large-scale and comprehensive
dataset, DeepLesion (Yan et al., 2019), which includes over 32K
lesions on various body parts in CT scans. We used the official
training set to train our model as in Yan et al. (2019, 2020) and
evaluated the results on the 800 manually labeled sub-volumes in
the test set of DeepLesion. To obtain the 3D volume detection re-
sults, we adopted the same strategy as in Yan et al. (2020), namely,
stacking the predicted 2D boxes to 3D ones if the intersection
over union (IOU) of two 2D boxes in consecutive slices is greater
than 6 (=0.1 in our implementation). The detailed comparison re-
sults are shown in Table 6. We can see that when the value of
FPs per sub-volume is small (from 0.125 to 1), our method cannot
achieve competitive results. And when this value keeps increasing,
our method gets competitive results. The main reason is that our
method is based on a 2D backbone instead of a 2.5D backbone and
does not design any mechanism for the 3D false prediction reduc-
tions. Therefore, when stacking the predicted 2D boxes to 3D ones,
our method ignores the 3D context information and then generates
many false positive predictions. Therefore, in future work, we will
extend our method to 3D implementation to address this draw-
back.

5. Conclusion

In this paper, we propose a new network with Mask R-CNN
as the base model for the detection of universal abnormal lymph
nodes in MR images. Our implementation includes the pseudo
mask generation, the global-local attention, and the multi-task un-
certainty loss that are different from the standard Mask R-CNN.
The generated pseudo mask provided more accurate supervision
than the original RECIST bookmarks, which alleviates the burden
for data annotation. Global-local attention mines more discrimi-
native features for detection while multi-task uncertainty loss re-
duces the cost to tune the weights of different tasks. Our method
was tested on our large-scale lymph node dataset and outper-
formed other state-of-the-art detectors.
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