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Type 2 diabetes mellitus is a common disease affecting  
approximately 13% of all U.S. adults; an additional 

34.5% meet the criteria for prediabetes (1). It often develops 
over several years, with a slow onset of symptoms. Without 
intervention, patients with impaired blood glucose tests have 
been shown to develop type 2 diabetes up to 8 years after 
their initial blood test, indicating a long prodrome phase (2). 
This slow onset contributes to the approximately 45.8% of 
undiagnosed adult cases of diabetes globally (3).

CT is a potentially useful modality for diagnosing type 
2 diabetes. CT is already widely used in clinical practice 
and can provide information on morphologic character-
istics of the pancreas. For example, studies have shown  
that the pancreas of a patient with diabetes has a smaller 
volume than that of a person without diabetes, with an 

increased amount of intrapancreatic fat and hence lower 
CT attenuation (4–8).

CT biomarkers outside the pancreas may also play an 
important role. Patients with type 2 diabetes may have more 
severe atherosclerosis in pancreas-bound arteries, includ-
ing the splenic artery in the peripancreatic region, and may 
show signs of liver disease (9,10). Visceral fat and muscle 
mass may also be good predictors of type 2 diabetes (11,12).

Although previous work on this topic has shown sig-
nificant results, those studies have had limitations. Most 
used manual methods whereby a radiologist or trained 
specialist identified the pancreas on medical images and 
then evaluated imaging biomarkers. Because of the time 
and effort this takes, the study samples have been small, 
with fewer than 50 patients each. Even in a meta-analysis 

Background:  CT biomarkers both inside and outside the pancreas can potentially be used to diagnose type 2 diabetes mellitus. 
Previous studies on this topic have shown significant results but were limited by manual methods and small study samples.

Purpose:  To investigate abdominal CT biomarkers for type 2 diabetes mellitus in a large clinical data set using fully automated deep 
learning.

Materials and Methods:  For external validation, noncontrast abdominal CT images were retrospectively collected from consecutive pa-
tients who underwent routine colorectal cancer screening with CT colonography from 2004 to 2016. The pancreas was segmented 
using a deep learning method that outputs measurements of interest, including CT attenuation, volume, fat content, and pancreas 
fractal dimension. Additional biomarkers assessed included visceral fat, atherosclerotic plaque, liver and muscle CT attenuation, 
and muscle volume. Univariable and multivariable analyses were performed, separating patients into groups based on time between 
type 2 diabetes diagnosis and CT date and including clinical factors such as sex, age, body mass index (BMI), BMI greater than 30 
kg/m2, and height. The best set of predictors for type 2 diabetes were determined using multinomial logistic regression.

Results:  A total of 8992 patients (mean age, 57 years 6 8 [SD]; 5009 women) were evaluated in the test set, of whom 572 had type 
2 diabetes mellitus. The deep learning model had a mean Dice similarity coefficient for the pancreas of 0.69 6 0.17, similar to the 
interobserver Dice similarity coefficient of 0.69 6 0.09 (P = .92). The univariable analysis showed that patients with diabetes had, 
on average, lower pancreatic CT attenuation (mean, 18.74 HU 6 16.54 vs 29.99 HU 6 13.41; P , .0001) and greater visceral fat 
volume (mean, 235.0 mL 6 108.6 vs 130.9 mL 6 96.3; P , .0001) than those without diabetes. Patients with diabetes also showed 
a progressive decrease in pancreatic attenuation with greater duration of disease. The final multivariable model showed pairwise areas 
under the receiver operating characteristic curve (AUCs) of 0.81 and 0.85 between patients without and patients with diabetes who 
were diagnosed 0–2499 days before and after undergoing CT, respectively. In the multivariable analysis, adding clinical data did not 
improve upon CT-based AUC performance (AUC = 0.67 for the CT-only model vs 0.68 for the CT and clinical model). The best 
predictors of type 2 diabetes mellitus included intrapancreatic fat percentage, pancreatic fractal dimension, plaque severity between 
the L1 and L4 vertebra levels, average liver CT attenuation, and BMI.

Conclusion:  The diagnosis of type 2 diabetes mellitus was associated with abdominal CT biomarkers, especially measures of pancreatic 
CT attenuation and visceral fat.
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at the University of Wisconsin Hospital & Clinics (UWHC), 
Madison, from 2004 to 2016. All patients who underwent rou-
tine CTC in the supine position were included unless their CT 
images were damaged or they were missing clinical data. Diag-
nosis of type 2 diabetes mellitus was identified through a system-
atic electronic health record search algorithm. We searched for 
diagnosis and date of any abnormal glucose test results, includ-
ing diagnosis of type 2 diabetes. Patients whose scans could not 
be accurately processed with the automated pancreas segmentor 
developed for this study were also removed.

The CTC data set used for this study has also been used in 
other published works (14–19). Our study differs from the oth-
ers in that it pertains to biomarkers of type 2 diabetes specifically 
and used automated pancreatic segmentations on noncontrast 
CT scans, whereas the other studies focused on biomarkers of 
other disease states (eg, atherosclerotic plaque burden or meta-
bolic syndrome) using different models of detection.

CT Study Protocols
Transverse abdominal CT images were obtained with the patient 
in the supine position without intravenous contrast material for 
CT colonography. As previously described (18), patients under-
went bowel preparation with cleansing and oral contrast agents. 
Then the bowel was distended using carbon dioxide delivered 
through a rectal tube under low pressure. Images were recon-
structed with 1.25-mm-thick sections and 1-mm section inter-
vals. Reconstruction parameters were adjusted on the basis of pa-
tient size. A soft-tissue algorithm was applied for reconstruction. 
The tube voltage used was 120 kVp. CT image characteristics are 
shown in Table 1.

Deep Learning Algorithm for Pancreas Segmentation
The data set used to develop this deep learning software on 
PyTorch consisted of ground-truth labels for 280 intrave-
nous contrast-enhanced CT images from the Medical Data 
Decathlon (20), 82 contrast-enhanced CT images from The 
Cancer Imaging Archive (21), 30 contrast-enhanced CT im-
ages from the Beyond the Cranial Vault challenge (22,23), 
24 noncontrast CTC images from the National Naval Med-
ical Center, Bethesda, Md (24), and 55 noncontrast CTC 
images from UWHC. These 471 images were divided into 

that combined 17 imaging-based diabetes studies, only a total of 
1139 patients with type 2 diabetes mellitus were evaluated across 
CT, MRI, and US (5).

Previous studies have shown how to leverage the plethora of in-
formation available from CT images for the opportunistic screen-
ing for various conditions beyond the clinical indication. Ex-
amples include screening for osteoporosis, cardiovascular events, 
and metabolic syndrome (13,14). Yet, opportunistic screening for 
predicting type 2 diabetes remains lacking. Thus, in this study, we 
investigated abdominal CT biomarkers for type 2 diabetes in a 
large clinical data set using fully automated deep learning.

Materials and Methods

Patients
The institutional review board and Office of Human Research 
Subjects Protection at the respective institutions approved this 
retrospective cohort study. We used a data set collected from con-
secutive patients undergoing routine CT colonography (CTC) 

Abbreviations
AUC = area under the receiver operating characteristic curve, BMI = 
body mass index, CTC = CT colonography, DSC = Dice similarity coef-
ficient, OR = odds ratio, UWHC = University of Wisconsin Hospital 
and Clinics

Summary
Deep learning methods demonstrated an association between abdominal 
CT biomarkers and the diagnosis of type 2 diabetes mellitus.

Key Results
	N Among 8992 noncontrast abdominal CT scans that were retrospec-

tively collected during routine colorectal cancer screening and then 
underwent deep learning–based pancreatic segmentation, patients 
with type 2 diabetes mellitus had lower pancreatic CT attenuation 
(mean, 18.74 HU 6 16.54 vs 29.99 HU 6 13.41, respectively; P 
, .0001) and greater visceral fat volume (mean, 235.0 mL 6 108.6 
vs 130.9 mL 6 96.3; P , .0001) than those without type 2 diabe-
tes mellitus.

	N The best predictors of type 2 diabetes mellitus from a multivariable 
analysis included intrapancreatic fat percentage, pancreatic fractal  
dimension, plaque severity between the L1 and L4 vertebra levels,  
average liver CT attenuation, and body mass index (P , .0001 for all).

Table 1: CT Scan Characteristics

Characteristic
Supine CTC Scans  
from UWHC

Medical Data  
Decathlon

The Cancer  
Imaging Archive

Beyond the  
Cranial Vault

CTC Scans from 
NNMC

Scanner manufacturer GE Medical Systems Unknown Philips and Siemens Unknown GE Medical Systems
Tube voltage (kVp) 120 Unknown 120 Unknown 120
Section thickness (mm) 1.25 2.5–5.0 1.5–2.5 2.5–5.0 1.25–2.5
Reconstruction interval (mm) 1 Unknown Unknown Unknown 1
No. of scans obtained with IV 

contrast material
0 282 82 30 0

No. of scans obtained without  
IV contrast material

9513 0 0 0 24

Note.—CTC = CT colonography, NNMC = National Naval Medical Center, IV = intravenous, UWHC = University of Wisconsin 
Hospital & Clinics.
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training, validation, and test sets. Of the 424 CT images 
used for training, 40 were noncontrast CT scans and 384 
were contrast-enhanced CT scans. Eight images were used 
for validation. Fourteen noncontrast CTC images from the 
National Naval Medical Center and 25 noncontrast CTC 
images from UWHC were used as test sets. Figure 1A shows 
a Standards for Reporting Diagnostic Accuracy chart of the 
training, validation, and testing splits. Further details of the 
deep learning software development are provided in Appen-
dix E1 (online).

Four rounds of active learning were performed to develop 
a three-dimensional U-net model. After each round, outliers 
were identified (as described in Appendix E1 [online]) and 
manually segmented using 3D Slicer (version 4.11.20210226). 
In total, 30 CTC images were added to the training data set for 
this indication (Fig 1A). The pancreas segmentations obtained 
from active learning were weighted four times higher when the 
data set was sampled during training. The three-dimensional 
U-net model was saved at three different stages of training 
(24 000, 26 000, and 29 000 iterations). The three models were 

Figure 1:   Standards for Reporting Diagnostic Accuracy flowcharts. (A) Chart shows patient flow in deep learning model de-
velopment. Institution 1 is the University of Wisconsin Hospital & Clinics, and institution 2 is the National Naval Medical Center. (B) 
Chart shows patient flow in clinical study. CTC = CT colonography, DICOM = Digital Imaging and Communications in Medicine.
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combined to create a “temporal ensemble” in which the three 
models were run and their soft max outputs were averaged to 
get a final result. Postprocessing was performed to select the 
largest connected component.

Determination of Pancreas Features
For each CT image, several measurements were taken from the 
automated pancreas segmentations: CT attenuation in Houn-
sfield units (average, SD, and median), pancreatic volume in 
milliliters, intrapancreatic fat percentage, and three-dimen-
sional fractal dimension. Intrapancreatic fat percentage was de-
termined using the fraction of voxels between 2190 HU and 
230 HU in the pancreatic segmentation. Fractal dimension 
analysis was done using a box counting method programmed 
with Python 3.8 (https://github.com/ChatzigeorgiouGroup/
FractalDimension).

The automated pancreatic segmentations were postpro-
cessed with erosions to minimize partial volume effects that 
could adversely affect pancreas CT attenuation and fat con-
tent measurements. Morphologic erosions of 2 mm in the 
x, y, and z directions were applied in three dimensions to 
remove any edges of the pancreatic segmentations that may 
not be accurate. The erosion algorithm used is scipy.ndimage.
morphology.binary_erosion. Both original and eroded pan-
creas volumes were subsequently used for analysis of pancre-
atic fat content and CT attenuation in Hounsfield units for 
all patients.

Extrapancreatic biomarkers were also analyzed, including 
visceral fat, abdominal and peripancreatic atherosclerotic plaque 
(measured in Agatston scores), average liver and muscle CT at-
tenuation, and muscle volume. Details of how these measure-
ments were obtained are included in Appendix E1 (online).

Verification of Deep Learning Model
We performed a subanalysis after stratifying patients ac-
cording to the percentage of measured visceral fat. Patients 
were split into quintiles ranging from low to high visceral 
fat. This analysis was motivated by the understanding that 
the amount of visceral fat in a patient has a substantial im-
pact on the success of a deep learning method for pancreas 
segmentation (25). Five patients were randomly chosen 
from each of these five visceral fat groups. The pancreas was 
manually segmented on the CT images for these 25 selected 
cases by a trained research assistant (H.T.) and subsequently 
checked by a board-certified radiologist with 28 years of 
postresidency experience (R.M.S.). Readers were blinded to 
clinical information associated with CT images during de-
velopment and verification of the deep learning model. All 
labels were produced using 3D Slicer.

Analysis of Inter- and Intraobserver Variability
To assess interobserver variability of the segmentations, the same 
25 randomly selected test cases that were used to assess deep 
learning performance were relabeled by another board-certified 
radiologist (S.L., with 12 years of postresidency experience). 
The second observer produced manual pancreas segmentations 
for the same 25 cases while blinded to the first observer’s seg-

mentations. For the intraobserver variability study, the 25 cases 
were segmented once again by the first observer 1 month after  
the ground truth or first batch of segmentations was produced. 
The second batch of segmentations was checked by the same 
radiologist who checked the first batch.

Statistical Analysis
The manual segmentations for the 25 randomly selected cases 
(described in the Verification of Deep Learning Model section) 
acted as ground-truth segmentations. They were then com-
pared with their corresponding automated segmentations using 
standard metrics: Dice similarity coefficient (DSC), Hausdorff 
distance, Jaccard index, average symmetric surface distance, and 
relative average volume difference. One-way analysis of variance 
for these metrics was performed with the five visceral fat groups. 
A linear regression was done to compare DSCs with the relative 
percentages of visceral fat. The measurements of CT attenuation, 
volume, fat content, and fractal dimension were also compared 
between the automated and manual segmentations with the 
paired sample t test.

For the intraobserver analysis, the ground-truth segmenta-
tions were compared with manual segmentations produced by a 
second observer using DSC, Hausdorff distance, Jaccard index, 
average symmetric surface distance, and relative average vol-
ume difference. For the interobserver study, the first and second 
batches of segmentations were compared using the same metrics.

A series of univariable and multivariable logistic regres-
sions were then performed to determine the best predictors 
of type 2 diabetes. Participants were categorized into three 
groups: those with type 2 diabetes, those with dysglycemia, 
and those without diabetes. The group with diabetes did not 
include patients with type 1 diabetes mellitus; only patients 
with type 2 diabetes were included. The groups with diabetes 
and dysglycemia were further subdivided into four groups de-
pending on the time between diagnosis and CT. These groups 
consisted of those who underwent CT at least 2500 days be-
fore diagnosis of diabetes, those who underwent CT 0–2499 
days before diagnosis, those who underwent CT 0–2499 days 
after diagnosis, and those who underwent CT at least 2500 
days after diagnosis. In the multinomial logistic regression 
(ie, generalized logit model), the response variable was the 
type 2 diabetes diagnosis, with only the nondiabetic group 
and four diabetic groups included (ie, with five nominal cat-
egories) (Table E1 [online]). The explanatory variables con-
sisted of 28 factors, including 23 CT-derived factors and five 
clinical factors (sex, age, body mass index [BMI], BMI .30 
kg/m2, and height), as shown in Table E2 (online).

For the univariable analysis, multinomial logistic regres-
sion models were fitted for each of the 28 explanatory vari-
ables individually. For the multivariable analysis, a stepwise 
approach was used to determine the optimal set of explanatory 
variables. Reported P values were not adjusted for multiple 
testing. Instead, a general rule-of-thumb P value threshold 
of .0018 (0.05/28) was used for determining whether to in-
clude variables in the final model. The best set of predictors 
was determined with stepwise logistic regression from among 
CT-derived factors only, from clinical factors only, and from 
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the combination of both. A secondary approach was also used, 
in which the stepwise method was combined with the addi-
tion of the lowest Schwarz information criterion to determine 
the optimal set of explanatory variables. All statistical analyses 
were performed with SAS software, version 9.4 (SAS Institute). 
Analyses included obtaining pairwise areas under the receiver 
operating characteristic curve (AUCs) with 95% CIs and pre-
dicted probabilities of falling into each patient group based on 
multivariable analysis. The multilevel AUCs were obtained us-
ing the SAS macro %MultAUC (26).

Results

Patient Characteristics
Our data set consisted of 8992 patients (mean age, 57 years 6 
8 [SD]; 5009 women), of whom 572 were diagnosed with type 

2 diabetes and 1880 with dysglycemia. There was no overlap 
between diagnoses of diabetes and dysglycemia. Patient demo-
graphic characteristics are shown in Table 2. A Standards for 
Reporting Diagnostic Accuracy chart showing patient flow is 
shown in Figure 1B.

Accuracy of Pancreas Segmentation
The deep learning model had a mean DSC of 0.69 6 0.17 
and a mean Jaccard index of 0.54 6 0.17 (Table 3). Patients 
with low visceral fat percentage had lower accuracies for pan-
creas segmentation. There were differences among the five vis-
ceral fat groups for the DSC (P = .01), Jaccard index (P = .01), 
and average symmetric surface distance (P = .01). Group 1, 
with the lowest visceral fat percentage, had poorer scores than 
groups 2–5 (P , .05). There was no evidence of a difference 
among the five groups for Hausdorff distance (P = .11) and 
relative average volume difference (P = .094). There was a posi-
tive correlation between DSC with the relative percentages of 
visceral fat (r2 = 0.17; P = .04). Patients with visceral fat per-
centage greater than 15% had consistently higher DSCs (Fig 
E1 [online]). Figure 2 shows examples of the various segmenta-
tions performed on images in patients from the five different 
visceral fat groups.

On the basis of paired sample t tests, no evidence of a 
difference was found for any metrics between manual and 
automated pancreas segmentations (Table E3 [online]). Lin-
ear regressions and Bland-Altman plots showed minimal dif-
ferences in average Hounsfield units (r2 = 0.99, P , .001; 
Bland-Altman 95% limits of agreement: 23.49 to 2.55 HU) 
and total pancreas volume (r2 = 0.91, P , .001; Bland-Alt-
man 95% limits of agreement: 211.18 to 13.60 mL) in the 
automated and manual segmentations (Fig 3).

Inter- and Intraobserver Variability
In the interobserver variability study, the mean DSC and Jac-
card index were 0.69 6 0.09 and 0.53 6 0.11, respectively, 
showing relative consistency between the two observers. In the 
intraobserver variability study, the mean DSC and Jaccard in-
dex were 0.81 6 0.10 and 0.69 6 0.13, respectively. The com-

Table 2: Summary of Demographic Characteristics for the 
CTC Data Set from the University of Wisconsin Hospital and 
Clinics

Characteristic
CTC  
Test Set

CTC  
Training Set*

Selected  
CTC Test Cases†

No. of patients 8992 30 25
Age (y)‡    57 6 8    61 6 8    58 6 7
No. of men 3983 20 12
No. of women 5009 10 13
Height (inches)‡ 66.3 6 10.3 68.4 6 4.6 60.8 6 18.9
BMI (kg/m2)‡ 28.9 6 6.5 29.9 6 7.7 29.6 6 6.4
Type 2 diabetes  

mellitus 
572   2   1

Dysglycemia 1880   7 11
No diabetes 6540 21 13

Note.—Except where indicated, data are numbers of patients. 
BMI = body mass index, CTC = CT colonography.
* Two scans in the training set were obtained in the prone 
position.
† Used for interobserver and intraobserver variability studies.
‡ Data are means 6 SDs.

Table 3: Accuracy of Final Pancreas Segmentation Model

Test Set No. of Scans DSC 
Hausdorff  
Distance (mm) Jaccard Index ASSD (mm) RAVD

Noncontrast NNMC CTC 14 0.75 6 0.06 24.02 6 12.0 0.60 6 0.07   5.16 6 8.20      0.01 6 0.18
All selected CTC test cases 25 0.69 6 0.17 29.63 6 19.91 0.54 6 0.17   4.57 6 4.66 20.10 6 0.20
VF group 1 5 0.46 6 0.27 48.16 6 27.19 0.33 6 0.23 10.61 6 7.73 20.28 6 0.23
VF group 2 5 0.72 6 0.09 31.10 6 17.22 0.57 6 0.11   3.95 6 2.21 20.07 6 0.19
VF group 3 5 0.77 6 0.02 19.61 6 3.84 0.62 6 0.03   2.35 6 0.25      0.07 6 0.18
VF group 4 5 0.76 6 0.05 18.45 6 7.89 0.62 6 0.06   2.46 6 0.63 20.11 6 0.06
VF group 5 5 0.73 6 0.12 30.82 6 23.46 0.59 6 0.15   3.47 6 2.40 20.09 6 0.22

Note.—Except where indicated, values are means 6 SDs. P values for the analysis of variance between visceral fat groups 1–5 were as 
follows: P = .01 for DSC, P = .11 for Hausdorff distance, P = .01 for Jaccard index, P = .01 for ASSD, and P = .09 for RAVD. ASSD 
= average symmetric surface distance, CTC = CT colonography, DSC = Dice similarity coefficient, NNMC = National Naval Medical 
Center, RAVD = relative average volume difference, VF = visceral fat (with group 1 having the lowest amount of visceral fat and group 5, 
the highest amount of visceral fat).
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plete results of the interobserver and intraobserver variability 
analyses are shown in Table 4.

Associations between Imaging Findings and Diagnosis of 
Diabetes and Dysglycemia
From the univariable analysis on each of the 28 explanatory 
variables, multilevel AUCs ranged from 0.51 to 0.62; the three 
highest AUCs corresponded to visceral fat volume, BMI, and  
average pancreas CT attenuation (Table E4 [online]). Patients 
with diabetes had, on average, lower pancreas CT attenuation 
(mean, 18.74 HU 6 16.54 vs 29.99 HU 6 13.41, respec-
tively; P , .0001) and greater visceral fat volume (mean, 235.0 
mL 6 108.6 vs 130.9 mL 6 96.3; P , .0001) than partici-
pants without diabetes.

In the multivariable analysis, the final model, which in-
cluded both CT-derived and clinical factors (sex, age, BMI, 
BMI .30 kg/m2, and height), produced a multilevel AUC of 

0.68 (Table E5 [online]). This value is similar to the multi-
level AUCs for the model with only CT-derived factors and 
the model with only clinical factors (0.67 and 0.63, respec-
tively) (Table E5 [online]). The optimal set of predictors cho-
sen in the final model included intrapancreatic fat percentage 
(in total and eroded volumes), pancreas fractal dimension, 
severity of plaque in the L1–L4 vertebra level (determined 
with the Agatston score), average liver CT attenuation, and 
BMI (P ,.0001 for all six variables). Adding clinical data did 
not improve upon CT-based AUC performance, as shown in 
Table E5 (online). The final multivariable model resulted in 
high pairwise AUCs ranging from 0.81 to 0.92, as shown  
in Table 5.

With the addition of the Schwarz information criterion 
for variable selection in the multivariable models, fewer vari-
ables were selected (shown in Table E5 [online]). In the final 
model (CT-derived and clinical), with the Schwarz information 

Figure 2:  Pancreas segmentations in patients from each of the five visceral fat groups. Segmentation performance is better for patients with higher visceral fat (group 5 
being the highest). Visceral fat percentages at the L1 level for the specific patients shown here were 9.81% in group 1, 13.72% in group 2, 20.19% in group 3, 27.88% in 
group 4, and 32.42% in group 5; Dice similarity coefficients were 0.36, 0.62, 0.78, 0.81, and 0.86, respectively. In the automated segmentation images, the green area 
indicates full segmentation and the yellow area indicates segmentation after erosion. Obs. = observer.
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criterion, visceral fat volume replaced several pancreatic mea-
surements. There was no significant difference in AUCs with the 
addition of the Schwarz information criterion, and the variables 
that were no longer selected after the addition of the Schwarz 
information criterion in the final model also had low P values 
(P , .0001 for all removed variables). For these reasons and 
the clinical relevance of the variables that were not selected after 
the addition of the Schwarz information criterion, we elected 
to keep the results obtained before the addition of the Schwarz 
information criterion.

All odds ratios (ORs) and their 95% CIs for the optimal 
predictors chosen in the final multivariable model are shown 
in Figure E2 (online). Healthy participants without diabetes 
are the reference group for all ORs. The ORs for intrapan-
creatic fat from the total and eroded volume ranged from 
1.16 to 1.25 and from 0.82 to 0.90, respectively. The ORs 

for pancreas fractal dimension ranged from 0.37 to 1.22. 
Note that the values for fractal dimension were multiplied 
by 10 to normalize the ORs. The ORs for severity of plaque 
(determined categorically) between patients with an Agatston 
score of 0 and those with an Agatston score greater than 300 
ranged from 1.73 to 3.60. The Agatston scores used were di-
vided by 100 to also normalize the ORs. The ORs for average 
liver CT attenuation and BMI ranged from 0.96 to 0.99 and 
from 1.08 to 1.13, respectively.

In a further analysis of average pancreas attenuation in all 
groups, we found not only that patients with diabetes and 
dysglycemia had lower mean attenuation values compared 
with patients in the nondiabetic groups but also that the lon-
ger the duration of disease or prodrome phase, the lower the 
average attenuation (Fig 4). Example images in patients with 
and without diabetes are shown in Figure 5. On the basis 

Figure 3:  Automated and manual measurements for 25 randomly selected patients who underwent supine CT colonography. (A, B) Comparison of average CT attenu-
ation in Hounsfield units with (A) linear regression and (B) Bland-Altman plots (r2 = 0.99, P , .001; Bland-Altman 95% limits of agreement: 23.49 to 2.55 HU).  
(C, D) Comparison of pancreas volume in milliliters with (C) linear regression and (D) Bland-Altman plots (r2 = 0.91, P , .001; Bland-Altman 95% limits of agreement: 
211.18 to 13.60 mL).

Table 4: Inter- and Intraobserver Variability Study Results

Study DSC
Hausdorff  
Distance (mm) Jaccard Index ASSD (mm)

RAVD (New Batch 
Minus Original)

RAVD (Original 
Minus New Batch)

Interobserver variability 0.69 6 0.09 26.38 6 12.49 0.53 6 0.11 3.34 6 1.39 20.30 6 0.24 0.60 6 0.51
Intraobserver variability 0.81 6 0.10 15.00 6 6.32 0.69 6 0.13 1.94 6 1.15 20.05 6 0.17 0.11 6 0.36

Note.—Values are means 6 SDs. Interobserver variability scores are for comparison between observer 1 and observer 2, with observer 1 
as ground-truth label. Intraobserver variability scores are for comparison between first and second batches by observer 1. First batch of 
segmentations by observer 1 are used as ground truth. ASSD = average symmetric surface distance, DSC = Dice similarity coefficient, 
RAVD = relative average volume difference.
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Table 5: Pairwise AUCs from Multivariable Analysis

Comparison CT-derived AUC Clinical AUC Final Model AUC 

Patients with type 2 diabetes (CT 2500 d before diagnosis) and  
nondiabetic participants

0.79 (0.76, 0.82) 0.78 (0.75, 0.81) 0.81 (0.78, 0.84)

Patients with type 2 diabetes (CT 0–2499 d before diagnosis) and  
nondiabetic participants

0.81 (0.77, 0.84) 0.77 (0.74, 0.81) 0.81 (0.78, 0.84)

Patients with type 2 diabetes (CT 0–2499 d after diagnosis) and  
nondiabetic participants

0.84 (0.81, 0.86) 0.82 (0.79, 0.85) 0.85 (0.82, 0.87)

Patients with type 2 diabetes (CT 2500 d after diagnosis) and  
nondiabetic participants

0.92 (0.87, 0.96) 0.87 (0.81, 0.93) 0.92 (0.88, 0.97)

Note.—Numbers in parentheses are 95% CIs. Final model includes both CT-derived and clinical factors. All pairwise areas under the 
receiver operating characteristic curve (AUCs) had P , .0001 for testing whether AUC equals 0.5 versus does not equal 0.5.

Figure 4:  (A, B) Bar graphs show average Hounsfield units of pancreas in patients with (A) type 2 diabetes mellitus and (B) dysglycemia com-
pared with participants without diabetes. (C, D) Bar graphs show average Hounsfield units of pancreas after controlling for body mass index in pa-
tients with (C) type 2 diabetes and (D) dysglycemia compared with participants without diabetes. Error bars show 95% CIs. Numbers in parentheses 
are the times between diagnosis (Dx) and imaging.
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of the final multivariable model with the optimal set of CT-
derived and clinical predictors, we estimated the probabilities 
of a patient falling into the nondiabetic or diabetic group 
as a function of intrapancreatic fat. This resulted in distinct 
patterns between the nondiabetic and diabetic groups (Fig 
E3 [online]).

Associations of Pancreas Volume with Age and Sex
Pancreas volume decreased with age (Fig E4 [online]). On 
average, men had larger pancreas volumes than women  
(P , .001).

Discussion
In this study, we aimed to investigate several fully automated 
deep learning–based CT biomarkers that may be associated with 

the presence of type 2 diabetes mellitus in a large data set of pa-
tients undergoing CT screening for colorectal cancer. Our results 
indicate that machine-to-person variability for the deep learning 
software was comparable to the person-to-person variability, as 
we found no evidence of a difference between the deep learn-
ing Dice similarity coefficient (DSC) and the interobserver DSC 
(mean, 0.69 6 0.17 vs 0.69 6 0.09; P = .92). The intraobserver 
DSC (mean, 0.81 6 0.10) was also very high, proving reliabil-
ity in the ground-truth segmentations. Through a univariable 
analysis, we found that patients with diabetes had, on average, 
lower pancreatic CT attenuation (mean, 18.74 HU 6 16.54 vs 
29.99 HU 6 13.41; P , .0001) and greater visceral fat volume 
(mean, 235.0 mL 6 108.6 vs 130.9 mL 6 96.3; P , .0001) 
than participants without diabetes. The multivariable analysis 
showed that the CT-derived factors had considerable predictive 

Figure 5:  Examples of pancreas segmentations on unenhanced axial abdominal CT images in healthy participants 
and patients with type 2 diabetes mellitus. Images on left are original CT images, and images on right show segmentations 
overlaid on the original CT images. (A) Images in a nondiabetic 61-year-old man with average pancreas CT attenuation 
of 35.50 HU 6 47.96 and pancreatic volume of 97.6 mL. (B) Images in a 59-year-old man with type 2 diabetes who 
was diagnosed 144 days before CT. Average pancreas CT attenuation was 20.66 HU 6 81.99 and pancreatic volume 
was 77.10 mL. (C) Images in a 67-year-old man with type 2 diabetes who was diagnosed 595 days after CT. Average 
pancreas CT attenuation was 18.46 HU 6 48.30 and pancreatic volume was 72.88 mL. The green area indicates full seg-
mentation and the yellow area indicates segmentation after erosion.
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power. Of the six variables selected as the optimal set of predic-
tors in the final multivariable model, five were CT-derived: intra-
pancreatic fat percentage in total and eroded volumes, pancreas 
fractal dimension, plaque severity between the L1 and L4 verte-
bra levels, and average liver CT attenuation (P , .0001 for all; 
pairwise areas under the receiver operating characteristic curve 
ranged from 0.81 to 0.92). This proves the final model’s ability 
to discern patients with type 2 diabetes before and after diagnosis 
from participants without diabetes.

The pancreas segmentations achieved through deep learning 
were accurate and reproducible, with a mean DSC of 0.69 6 
0.17. Although higher DSCs have been reported for pancreas 
segmentation at contrast-enhanced CT, little work, if any, has 
been done with noncontrast CT, which is a more challenging 
problem (15). The intra- and interobserver variabilities were con-
sistent with those found in the literature for contrast-enhanced 
CT (27,28). This result is notable given the difficulty of pancreas 
segmentation on relatively high-noise, low-radiation-dose non-
contrast CTC images.

This study showed that patients with type 2 diabetes had, 
on average, lower average pancreas, muscle, and liver CT at-
tenuation; higher SD in pancreas CT attenuation; and lower 
pancreas fractal dimension. These findings point to high 
amounts of peri-organ and intra-organ fat, which are related to 
and consistent with previous work showing that patients with 
diabetes tend to accumulate more visceral and intrapancreatic 
fat than do persons without diabetes (5,6,8,11). Interestingly, 
several previous studies showed that patients with type 2 dia-
betes had smaller pancreas volumes than matched healthy con-
trols, whereas our study did not find the same result (4,5,7). 
Patients with type 2 diabetes showed no significant difference 
in pancreas volume when compared with those who did not 
have diabetes after adjustment for BMI. This may be due to 
a difference in analysis methods. It has also been previously 
reported that patients with type 2 diabetes specifically show 
parenchymal tissue loss compared with healthy individuals (7). 
Perhaps the loss of parenchymal tissue in patients with type 
2 diabetes is offset by the increase in intrapancreatic fat. A 
higher amount of abdominal plaque in patients with type 2 
diabetes compared with those without diabetes is consistent 
with the literature. However, with the technique we used, we 
could not prove that there is more plaque in pancreas-bound 
arteries in the peripancreatic region in patients with type 2 
diabetes (9,10). The multivariable analysis in our study us-
ing both pancreatic and extrapancreatic features is a novel ap-
proach and, to our knowledge, has not been shown in pre-
vious studies. Of note, the multivariable model with only 
CT-derived and clinical factors achieved high AUCs without  
serum markers such as glucose and hemoglobin A1c.

This study had expected limitations involving the use of deep 
learning software for pancreas segmentation. The pancreas can 
be difficult to segment both manually and automatically on low-
radiation-dose noncontrast CTC images, particularly in patients 
with little visceral fat (25). These challenges were addressed as 
best as possible through active learning and the use of various 
training data. Nonetheless, the model achieved DSCs averaging 
0.69 on the selected CTC test cases, which is state-of-the-art 

deep learning performance for pancreas segmentation at non-
contrast CT (29). In addition, limitations were tied to the retro-
spective design of the study. For example, study participants had 
a CT scanning date that ranged from 5055 days before diabetes 
diagnosis to 4822 days after diagnosis. This added complexity 
to how the data were analyzed; patients with diabetes had to be 
separated into four groups based on time since diagnosis. Al-
though these four groups are referred to as diabetes groups, the 
stage of disease in these patients at the time of CT could not be 
determined because this may vary person to person. It should be 
noted that diabetes is known to have slow symptom onset, with 
a large prodrome phase that can last up to 8 years (2). Hence, 
patients in these groups were assumed to have sufficiently simi-
lar health conditions to be grouped together. Another limita-
tion was that the final model did not include additional clinical 
factors such as race and/or ethnicity, family history, blood lipid 
level, hypertension, blood glucose levels, and hemoglobin A1c 
level. This might have improved the final model.

In conclusion, our study shows that through a multivariable 
approach, we can use fully automated abdominal CT biomark-
ers for the opportunistic detection and prediction of type 2 dia-
betes mellitus at CT performed for other indications. In the field 
of medical image analysis, improvement in automated pancreas 
segmentations and its application to clinical problems is needed 
(30). This study is a step toward the wider use of automated 
methods to address clinical challenges. Future work may be fo-
cused on predicting type 2 diabetes in a prospective study. The 
current study may also inform future research on the reasons 
for the changes that occur in morphologic characteristics of the 
pancreas in patients with diabetes. However, we ultimately hope 
that the CT biomarkers investigated herein might inform diag-
nosis of early stages of type 2 diabetes and allow patients to make 
lifestyle changes to alter the course.
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