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ABSTRACT

Cardiovascular disease is the number one cause of mortality worldwide. Risk prediction can help incentivize
lifestyle changes and inform targeted preventative treatment. In this work we explore utilizing a convolutional
neural network (CNN) to predict cardiovascular disease risk from abdominal CT scans taken for routine CT
colonography in otherwise healthy patients aged 50-65. We find that adding a variational autoencoder (VAE) to
the CNN classifier improves its accuracy for five year survival prediction (AUC 0.787 vs. 0.768). In four-fold cross
validation we obtain an average AUC of 0.787 for predicting five year survival and an AUC of 0.767 for predicting
cardiovascular disease. For five year survival prediction our model is significantly better than the Framingham
Risk Score (AUC 0.688) and of nearly equivalent performance to method demonstrated in Pickhardt et al. (AUC
0.789) which utilized a combination of five CT derived biomarkers.

Keywords: cardiovascular disease, machine learning, deep learning, longevity, artificial intelligence, risk, ab-
dominal CT, all-cause mortality

1. PURPOSE

Globally, cardiovascular disease (CVD) remains the number one cause of mortality, causing 17.9 million deaths
in 2019, including 38% of all premature deaths from noncommunicable diseases.1 As standards of living increase
globally, people have more time and resources to invest in preventative measures to protect their long term
health. Since the 1960s, the rate of deaths from CVD in the United States has been reduced by about 50%
through a mixture of lifestyle changes and improved treatment. It has been argued that up to 90% of CVD
is preventable if lifestyle changes and other interventions are implemented early enough.2 Informing a patient
that they have higher than average CVD risk can help encourage positive lifestyle changes. Additionally, several
primary prevention treatments are under investigation to reduce CVD risk including metformin,3,4 low-dose
aspirin,5 and gene therapy.6 Given the costs and risks associated with these treatments, targeting them to the
most at-risk patients will be important.

Genetic screening can help with targeting but completely neglects the effects of environmental exposures. A
popular risk scoring system for CVD risk used currently is the Framingham risk score (FRS) which factors in
age, sex, cholesterol level, and blood pressure.7 In the Framingham Heart Study 8,491 patients were followed
for 12 years and it was found that the FRS achieved a C-statistic (equivalent to AUC for censored data) for
predicting CVD of 0.763 (95% confidence interval (CI) 0.746 - 0.780) in men and 0.793 (95% CI, 0.772 - 0.814)
in women.8 Previously we showed that the FRS yields an AUC of 0.688 (95% CI 0.650–0.727) for predicting five
year survival for the patient cohort we will study.9 A 2019 meta-analysis compared three popular risk models
for predicting 10-year CVD risk - the FRS, Framingham Adult Treatment Panel III model, and pooled cohort
model.10 They found modest C-statistics ranging between 0.68-0.74.10

Imaging biomarkers hold much promise for improving CVD risk scoring. In particular, coronary artery
calcification (CAC) scoring has been heavily studied.11,12 CAC scores are typically obtained using a specialized
ECG gated non-contrast cardiac CT scan. The addition of CAC score has been shown to improve risk prediction
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when added to more traditional risk factors such as age, gender, blood biomarkers, and family history.13–15 In the
Multi-Ethnic Study of Atherosclerosis (MESA) dataset the FRS yielded a C-statistic for CVD risk (median follow
up time 7.6 years) of 0.62 but that rose to 0.78 when CAC score was included.13 Work by Mets et al. obtained a
C-statistic of 0.71 (95% CI 0.67-0.76) for three year survival prediction using the National Lung Screening Trial
dataset with a multivariate model that combined CAC score and clinical parameters (age, smoking status, etc.)14

McClelland et al. obtained a C-statistic of 0.80 for 10 year prediction of coronary heart disease when combining
CAC score with blood biomarkers, family history, age, and gender.15 Recently several works have shown how
deep learning systems can automate CAC scoring.16–20 Interestingly, Chao et al. have demonstrated that feeding
a box around the heart from a chest CT into a multi-view convolutional neural net (CNN) architecture can lead
to improved CVD and mortality prediction over the state of the art for automated CAC scoring or manual CAC
grading.20 This suggests that CNNs can extract additional features beyond the coronary artery calcification
which help inform the risk prediction. Partially by inspired that work, in this work we study feeding an entire
abdominal CT scan into a CNN to perform risk scoring rather than extracting custom biomarkers such as aortic
calcification score and visceral/subcutaneous fat ratio like we did in a prior work.9

The vast majority of prior work on CVD or all-cause mortality risk prediction has looked at either chest
CT19–24 or chest X-ray.25,26 Among the works that utilize chest CT, the publicly available National Lung
Screening Trial (NLST) dataset has been heavily utilized14,19,20,23,24,26 in addition to the Dutch-Belgian lung
cancer screening trial,21 or in-house chest CT datasets.22 NLST participants have a history of smoking, putting
them at higher than average risk for CVD. In contrast, our dataset consists of scans from an otherwise healthy
patient cohort. In this work we focus on risk scoring from abdominal CT scans, which has only been studied
previously in a handful of works.9,27,28 Abdominal CT are rich with biomarkers known to be relevant to
cardiovascular risk such as visceral fat and aortic plaque.29,30 This is the first work to feed the entire abdominal
CT scan into a deep learning model.
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Figure 1. The architectures employed. The CNN architecture consists of five CNN layers followed by two fully connected
layers. Optionally a VAE decoder may be attached to the CNN to encourage the CNN to obtain good high level features. If
the VAE is attached, one can experiment with attaching the classification output to the vector of latent means (architecture
2)

2. METHODS

The dataset we utilize consists of CT colonography (CTC) scans from the University of Wisconsin Medical
Center.27 9,223 people underwent CTC scans between April 2004 and December 2016. Further details on
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Figure 2. Patient flow chart showing how the patient cohort was selected and split into train, validation, and test sets
for five year survival prediction.

the cohort are provided in Pickhardt et al, 2020.9 As in prior works9,27 cardiovascular disease was defined as
myocardial infarction, cerebrovascular accident, or development of congestive heart failure. These reflect the
endpoints considered by the FRS for cardiovascular disease.

We found 6775 patients had five year follow up data indicating if they survived for five years and out of those
216 (3%) died within five years. Similarly, 7008 patients had follow up data indicating whether or not they were
diagnosed with CVD within five years, and out of those 399 developed CVD (5.6%). We used roughly 71% of
the data for training, 5% for validation, and 25% for test. The data flow and number of patients in the training,
validation, and testing folds for 5 year survival prediction is summarized in figure 2.

The architectures for the CNN and VAE are shown in figure 1. The two architectures were identical apart
from the presence of the VAE decoder. To reduce the number of parameters in the network the first convolutional
layer contains a large 7x7x7 kernel applied with a stride of 2 in each direction and padding of 3 on the edges. The
rest of the convolutional layers use 4x4x4 kernels with a stride of 2 and padding of 1. Group normalization and
dropout (dropout rate 0.5) were used after each convolutional layer. In summary, the CNN encoder contains 5
convolutional layers and two feedforward networks and has a total of 5,414,558 parameters. The VAE architecture
contains 3 additional fully connected layers and 5 additional upsampling layers and has a total of 21,060,930
parameters. We use a relatively small latent vector size of D = 256 to encourage the network to find efficient
high level features.

We also attempt to add the patient age and gender information to the model. As is standard practice in
machine learning, we encode the age and gender information in one-hot vectors. Ages were encoded in a vector
of length 60 corresponding to ages between 30-90 years old (any patient with age less than 30 is set to 30 and
any above 90 is set to 90). The one hot vectors are concatenated to the hidden layer.

The images are resampled to a size of 192x192x128 using trilinear interpolation, clipped to [-500, 500], and
then rescaled to between [0, 1]. To deal with the data imbalance (only ≈ 3% of patients died with 5 years) we
reweight the data during training so the ratio of survived/died is 50/50 during training. The RAdam optimizer31

was used with a learning rate of 0.001 and batch size of 4. The data augmentations employed were limited to
random rotations around a random axis by +/- 0-15 degrees, random 0-20% cropping in the cranial-caudal
direction, and random left-right flipping.

Most existing works using a VAE, such as van Velzen et al.,23 train an autoencoder first for image recon-
struction and then train a separate classification model that utilizes either the latent vector or a hidden layer
vector taken from the “bottleneck” portion of the VAE. In this work we perform joint training, training our
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VAE model for both image reconstruction and classification at the same time. This procedure is inspired by
previous work where a VAE decoder was attached to a 3D V-Net.32 The author claims that adding the VAE
helps regularize the 3D V-Net and prevent overfitting.32 In a similar way we hypothesize that joint training with
the VAE attached will improve the generalization performance of the classifier by encouraging the network to
learn robust high level representations. Joint training is more challenging to implement since it requires carefully
weighting the loss terms, otherwise one or more loss terms may be ignored during gradient descent training.

The loss function applied at iteration i for the VAE architecture was:

Li = βLCE + LL1 + ΓiγLKL (1)

where

LL1 = ||Iinput − Ipred|| LKL =
1

N

∑
µ2 + σ2 − log σ2 − 1 (2)

The loss function for the classifier was the standard cross-entropy loss weighted by a factor β. For the VAE
reconstruction loss we used an L1 loss function. As has been adopted in prior works,33 a weighting factor Γi was
applied to Kullback-Leibler loss term of the VAE and linearly increased from 0 to 1 over the course of the first
5,000 iterations. This practice prevents the optimizer from only focusing on minimizing the KL loss in the early
stages of training. The factors β and γ had to be determined empirically. After experimenting with weightings
of β ∈ {1, 10, 100} and γ ∈ {0.001, 0.0001} we used β = 10 and γ = 0.001 as this was the only combination where
all three loss functions decreased during training. Further tuning of these hyperparameters was not attempted.
The F1 score and AUC in the validation set were monitored during training. All models were trained for exactly
four epochs, which was found to be sufficient for the validation F1 and AUC to converge.

3. RESULTS

AUC 5-year AUC 5-year AUC 5-year
method mortality CVD or mortality CVD
CNN only 0.768±0.026
CNN+VAE (arch #1) 0.787±0.030 0.767 ± 0.036
CNN+VAE (arch #1) + age+sex 0.777±0.031
CNN+VAE (arch #2) 0.770±0.034
FRS9 0.688 0.695
BMI9 0.499 0.552
best CT derived model from Pickhardt et al. 20209 0.789 0.742
best multivariate model (CT biomarkers+FRS)9 0.796 0.751

Table 1. Summary of average AUCs in four-fold cross validation and standard deviation over the four folds.

box size validation AUC test AUC
128x128x128 0.75 0.74
192x192x128 0.76 0.76
192x192x192 0.78 0.79
256x256x128 0.78 0.76

Table 2. Hyperparameter optimization experiments testing different box sizes for five year survival prediction using the
CNN-only architecture. Validation AUC is an average of the validation AUCs obtained in the the last epoch of training
and the test AUC is the AUC on the hold-out test set for the final model after 4 epochs of training.

A summary of the average AUCs obtained in four-fold cross validation is provided in table 3 and select ROC
curves are shown in figure 4. In line with our hypothesis, we found that the VAE obtained a higher AUC than the
CNN only (0.787 vs 0.768), although we note that due to the limited number of folds employed means the result is
not statistically significant (Welch’s t-test p = 0.34). VAE architecture option #2, where the classifier is attached
to the latent vector means, performed slightly worse than VAE architecture option #1. The concatenation of
age and sex information to the final layer of the classifier did not improve the AUC. This may partially be due

Proc. of SPIE Vol. 12033  120332N-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 07 Apr 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Figure 3. Visualization of a case from the publicly available Kidney Tumor Segmentation Challenge (KiTS) dataset which
contains aortic plaque. The patterns observed here were found to be remarkably consistent across five different cases we
looked at. This method is likely showing only where the network is looking generally in the first few layers and it is hard
to draw many firm conclusions about how the model functions internally on the basis of this sort of visualization.
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Figure 4. Select average ROC curves under 4-fold cross validation for five year survival prediction (left) and five year
CVD prediction (right). The shaded regions show the standard deviation over the four folds.

to the fact that the ages of the patients did not vary that much. It may be possible to better incorporate the
age and gender information, eg. by adding an additional fully connected layer.

The results in table 3 were obtained using a box size of 192x192x128. After obtaining those results we ran
some hyperparameter optimization experiments to investigate the effect of box size, the results of which are
shown in table 3). The results show a slightly lower AUC is found when using a smaller box of size 128x128x128
and a slightly higher AUC is obtained when the box size is increased to 192x192x192, at least for the one fold
under consideration. The results suggest that a larger box of 192x192x192 may be beneficial but there is little
benefit to increasing the box size beyond that.

We experimented with visualizing model using guided backpropagation34 using a publicly available code-
base.35 An example of the visualization obtained can be found in figure 3. As shown by Adebayo et al.,36

“saliency” methods like guided backprop are only sensitive to what is going on in the first few layers. Such
methods show roughly where the network is looking, but do not provide much insight into what the network is
doing and should be interpreted with caution.37,38
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4. NEW OR BREAKTHROUGH WORK

For the first time we have shown how a deep learning model can predict all-cause mortality risk directly from
an abdominal CT using a novel jointly trained VAE architecture. We found that the use of the VAE decoder
improves the model over using just a plain CNN architecture. The VAE based model is significantly better
than using the Framingham Risk Score at predicting five year mortality and is of equivalent accuracy to the
best system for abdominal CT demonstrated in Pickhardt et al.9 (AUC 0.787 vs 0.789). Our model has the
advantage of being much simpler than the prior system, which requires the use of five independent software tools
for plaque, bone mineral density, visceral/subcutaneous fat, liver fat, and muscle quantification. On a modern
workstation with a NVIDIA Quadro RTX 8000 GPU our model runs in about four seconds and that time reduces
to less than two seconds when our model is preloaded into GPU memory. Many avenues are open for improving
our model further.
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