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Abstract
Purpose  Fully automated CT-based algorithms for quantifying bone, muscle, and fat have been validated for unenhanced 
abdominal scans. The purpose of this study was to determine and correct for the effect of intravenous (IV) contrast on these 
automated body composition measures.
Materials and methods  Initial study cohort consisted of 1211 healthy adults (mean age, 45.2 years; 733 women) undergoing 
abdominal CT for potential renal donation. Multiphasic CT protocol consisted of pre-contrast, arterial, and parenchymal 
phases. Fully automated CT-based algorithms for quantifying bone mineral density (BMD, L1 trabecular HU), muscle 
area and density (L3-level MA and M-HU), and fat (visceral/subcutaneous (V/S) fat ratio) were applied to pre-contrast and 
parenchymal phases. Effect of IV contrast upon these body composition measures was analyzed. Square of the Pearson cor-
relation coefficient (r2) was generated for each comparison.
Results  Mean changes (± SD) in L1 BMD, L3-level MA and M-HU, and V/S fat ratio were 26.7 ± 27.2 HU, 2.9 ± 10.2 cm2, 
18.8 ± 6.0 HU, − 0.1 ± 0.2, respectively. Good linear correlation between pre- and post-contrast values was observed for all 
automated measures: BMD (pre = 0.87 × post; r2 = 0.72), MA (pre = 0.98 × post; r2 = 0.92), M-HU (pre = 0.75 × post  + 5.7; 
r2 = 0.75), and V/S (pre = 1.11 × post; r2 = 0.94); p < 0.001 for all r2 values. There were no significant trends according to 
patient age or gender that required further correction.
Conclusion  Fully automated quantitative tissue measures of bone, muscle, and fat at contrast-enhanced abdominal CT can 
be correlated with non-contrast equivalents using simple, linear relationships. These findings will facilitate evaluation of 
mixed CT cohorts involving larger patient populations and could greatly expand the potential for opportunistic screening.

Keywords  Image processing · Opportunistic screening · IV contrast · Bone-mineral-density · Muscular atrophy ·  
Intra-abdominal fat

Introduction

Abdominal CT scans contain robust information on body 
composition unrelated to the study indication which often 
goes unused in clinical practice [1]. Fully automated  

CT-based tools can now use artificial intelligence (AI) algo-
rithms to rapidly and objectively acquire biometric data from 
these studies to be used in opportunistic screening. Such data 
can then be used for patient risk stratification and prediction 
of future adverse events. To date, CT-based AI tools have 
been validated for the quantification of bone mineral den-
sity, liver fat, muscle bulk and density, calcification of the 
abdominal aorta, and intra-abdominal fat [2–6]. Biometric 
data acquired from these tools have also been demonstrated 
to have predictive value comparable to established clinical-
based screening tools [7–9].

Importantly, the data from all of the above studies were 
collected from non-contrast CT studies. While some work 
has been done to determine the effects of intravenous (IV) 
contrast on CT-based biometric measures [10–12], evalu-
ation on fully automated AI collected biometric data is 
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limited. The purpose of this study was to determine and 
correct for the effect of IV contrast on measures of bone, 
muscle, and fat, such that previously proposed opportun-
istic screening techniques could be expanded to contrast-
enhanced CT studies.

Methods

Patient cohort and CT protocol

This HIPAA-compliant investigation was approved by the 
Institutional Review Board at the University of Wisconsin 
and the Office of Human Subjects Research Protection at the 
NIH Clinical Center. The requirement for signed informed 
consent was waived for this retrospective assessment. From 
a generally healthy, asymptomatic adult cohort of 1250 con-
secutive individuals undergoing abdominal CT for potential 
renal donation between February 2010 and January 2017, a 
final study cohort of 1211 was procured after exclusion of 
missing or corrupted image data. Basic demographic (age 
and gender) was collected for these 1211 subjects.

All individuals in the study cohort underwent abdominal 
CT utilizing a dedicated multiphasic protocol for the pur-
pose of renal donor evaluation. All scans were performed 
on multidetector-row CT scanners (GE Healthcare, Wauke-
sha, WI), typically with 64 × 0.625 detector configuration, 
120 kV setting, and modulated mA with noise index ranging 
from 17.0 to 27.5, both based on patient size. A pre-contrast 
abdominal series was obtained extending from T12-L4. A 
split-bolus IV contrast technique was used to achieve mul-
tiphase dynamic and excretory imaging. An initial injection 
consisted of 20 ml of nonionic contrast (with 20 ml saline 
flush) 5 min prior to the multiphasic injection to opacify the 
upper collecting system. Multiphasic injection consisted of 
split bolus of 30 ml contrast (and 30 ml saline) at 3 ml/s 
prior to the arterial/vascular phase acquisition, followed by 
100 ml contrast/50 ml saline at 5 ml/s 20 s later for the late 
portal venous/parenchymal phase acquisition. For this study, 
only the pre-contrast and parenchymal post-contrast phases 
were utilized for assessing the automated CT tools described 
below. For the arterial phase, the partial coverage was inad-
equate for assessment, and furthermore, this phase is of less 
interest for use with our automated body composition tools. 
Series were originally reconstructed as 5 mm slices at 3-mm 
intervals. The images were retrospectively reformatted to 
3 mm slices at 3-mm intervals.

Automated CT biomarkers

The deep-learning and image processing algorithms used in 
this study were previously developed and tested. The CT-
based algorithms are designed to automatically segment and 

quantify visceral and subcutaneous fat, body wall musculature, 
and vertebral trabecular bone at specific spinal levels. These 
have all been trained and tested on separate cohorts not used 
in the current study [13–17]. Additional validation studies for 
these tools in a separate patient cohort investigating normative 
values and changes over time of the algorithm outputs have 
also been published [3, 5, 6]. These works have all utilized the 
high-performance computing capabilities of the NIH Biowulf 
system.

Detailed descriptions of the AI methodology for automated 
CT-based anatomic tissue segmentation and quantification 
tools are provided in the above referenced works. Briefly, for 
bone and fat quantification, feature-based image processing 
algorithms were used to first identify and segment vertebral 
levels T12-L5. At the desired vertebral level, the anterior tra-
becular space is then isolated for BMD measures, as are the 
visceral and subcutaneous fat compartments. The abdominal 
wall musculature tool uses a deep-learning algorithm consist-
ing of a modified 3D U-Net for segmentation and analysis at 
the desired vertebral level.

Based on the prior works [3, 5, 6], it was determined that 
the L3 level was preferred for muscle assessment and the L1 
level was best for both bone and fat measurements. There-
fore, for this study, we used the final selected tissue measures 
applied to the pre- and post-contrast series: L1-level trabecular 
HU for bone, L3-level abdominal wall muscle HU, L3-level 
abdominal wall muscle area, and L1-level visceral-to-subcu-
taneous (V/S) fat ratio. Figure 1 demonstrates typical pre- and 
post-contrast case examples of these automated measures. 
Patients who had a failed biomarker measure on pre- and/or 
post-contrast studies were excluded from analysis of that bio-
marker, but remained included for analysis of other success-
fully measured biomarkers.

Statistical analysis

Summary statistics were compiled for biomarker measure-
ments for pre- and post-contrast studies as well as change 
between the two. Linear least-squares regression analysis was 
performed to compare pre-and post-contrast biomarker results. 
After initial data review, a set dependent (pre-contrast) vari-
able intercept of 0 was used for V/S fat ratio, abdominal wall 
muscle area, and L1 BMD. A least-squares estimated intercept 
was used for abdominal wall muscle density. As such, r2 equals 
the square of the Pearson correlation coefficient between the 
observed and modeled (predicted) data values of the depend-
ent variable.
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Results

Patient demographics

Average age of patients was 45.2 years with a SD of 
12.5 (minimum 18; maximum 76 years); 733 of the total 
1211 patients were female (478 males). Age and gender 
were not meaningful, independent predictors of change 
in CT-based biomarker measurements between pre- and 
post-contrasted studies for any of the body composition 
measures in the cohort (n = 1211).

Visceral and subcutaneous fat area

Pre- and post-contrast visceral and subcutaneous fat area 
data were successfully acquired for 1204 of the 1211 subjects 
in the cohort (99.4%). An average (± SD) of 353.8 ± 286.5 
mm2 and 282.7 ± 256.3 mm2 was measured for pre- and post-
contrast visceral fat areas, respectively, representing an aver-
age (± SD) change of -71.1 ± 55.1 mm2, or a 25.4% average 
decrease in area measured on contrasted studies. An aver-
age (± SD) of 454.2 ± 276.9 mm2 and 421.8 ± 271.0 mm2 
was measured for pre- and post-contrast subcutaneous fat 

Fig. 1   Composite of CT images 
demonstrating output from auto-
mated algorithms in a 43-year-
old woman. Pre-contrast and 
post-contrast image pairs are 
shown for L3-level muscle 
(red) segmentation (a and b), 
L1-level visceral (blue) and sub-
cutaneous (red) fat segmenta-
tion (c and d), and L1 trabecular 
sampling (e and f, green ROI)
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areas, respectively, representing an average (± SD) change of 
32.4 ± 33.9 mm2, or a 9.4% average decrease in area meas-
ured on contrasted studies. The relationship of pre- and 
post-contrast visceral fat area (VPre and VPost) was modeled 
with the linear correlation of VPre = 1.18 × VPost (r2 = 0.96; 
p =  < 0.001). The relationship of pre- and post-contrast sub-
cutaneous fat area (SPre and SPost) was modeled with the lin-
ear correlation of SPre  = 1.06 × SPost (r2 = 0.98; p =  < 0.001).

Average (± SD) V/S ratio was 0.87 ± 0.73 in pre-contrast 
studies and 0.74 ± 0.68 in post-contrast studies. The aver-
age change (± SD) after contrast was − 0.13 ± 0.17, repre-
senting a 17% decrease on average after contrast. Figure 2 
shows the relationship of pre- and post-contrast V/S ratio 
(V/SPre and V/SPost), modeled with the linear correlation of 
V/SPre = 1.11 × V/SPost (r2 = 0.97; p =  < 0.001).

Muscle area and density

Pre- and post-contrast L3-level muscle area data were suc-
cessfully acquired for 1205 of the 1211 subjects in the 
cohort (99.5%). An average (± SD) of 141.0 ± 36.8 mm2 
and 143.8 ± 37.7 mm2 was measured for pre- and post-
contrast areas, respectively, representing an average (± SD) 
change of 2.9 ± 10.2 mm2, or a 2.4% average increase with 
contrasted studies. The relationship of pre-contrast muscle 
area (M-AreaPre) and post-contrast muscle area (M-Area-
Post) is shown in Fig. 3a, resulting in a linear correlation of 
M-AreaPre = 0.98 × M-AreaPost (r2 = 0.92; p =  < 0.001).

Pre- and post-contrast L3-level muscle density data were 
acquired for 1205 subjects in the cohort 99.5%. An average 
(± SD) of 32.7 ± 10.6 HU and 51.5 ± 12.3 HU was measured 
for pre- and post-contrast attenuation, respectively, repre-
senting an average (± SD) change of 18.8 ± 6.0 HU, or a 
77.3% average increase on contrasted studies. The relation-
ship of pre-contrast muscle attenuation (M-HUPre) and post-
contrast muscle attenuation (M-HUPost) is shown in Fig. 3b 
with a linear correlation of M-HUPre = 0.75 × M-HUPost + 5.7 
(r2 = 0.75; p =  < 0.001). As HU values less than zero are 
physiologically reasonable in muscle with more extensive 

fatty involution, an estimated y-intercept was used for the 
linear regression.

Bone mineral density

Pre- and post-contrast BMD data were acquired for 1187 
subjects in the final cohort (98.0%). An average (± SD) of 
186.1 ± 47.1 HU and 212.8 ± 51.7 HU was measured for pre- 
and post-contrast attenuation, respectively, representing an 
average (± SD) change of 26.7 ± 27.2 HU, or a 15.8% aver-
age increase with contrasted studies. The relationship of L1 
trabecular bone pre-contrast attenuation (B-HUPre) and post-
contrast attenuation (B-HUPost) is shown in Fig. 4 with the 

Fig. 2   Pre-contrast vs. post-contrast fat measurement data. Scatterplot 
shows the strong linear correlation for pre- and post-contrast auto-
mated visceral-to-subcutaneous (V/S) fat ratio

Fig. 3   Pre-contrast vs. post-contrast muscle measurement data. 
Scatterplots show the correlation between pre- and post-contrast 
automated L3-level muscle area (a) and attenuation values (b). Not 
surprisingly, the linear correlation is stronger for area, but was also 
apparent for attenuation values. Muscle HU was the one measure that 
necessitated a non-zero intercept

Fig. 4   Pre-contrast vs. post-contrast BMD measurement data. Scatter-
plots show the correlation between pre- and post-contrast automated 
L1 trabecular attenuation values
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linear correlation of D-HUPre = 0.87 × D-HUPost (r2 = 0.72; 
p =  < 0.001).

Analysis of segmentation errors

Qualitative visual review of the automated CT tools in the 
uncommon outlier cases usually revealed errors in segmen-
tation as the underlying reason for the discrepancy. Common 
segmentations errors included: for muscle, missing parts of 
the muscles or getting the L3 level incorrect; for fat, inability 
to find the abdominal wall and getting the L1 level incor-
rect; and for bone, erroneous placement of the ROI within 
the vertebral body and getting the L1 level incorrect; for 
all tools, patient motion or inaccurate registration between 
pre- and post-contrast series. Examples of such errors are 
shown in Fig. 5.

Discussion

Comparing automated CT biomarker measurements on pre- 
and post-contrast studies, we found that simple linear corre-
lations effectively accounted for the population-based effects 
of IV contrast for the various muscle, fat, and bone measures 
of interest. Specifically, V/S fat area ratios (r2 = 0.97), L3 
muscle area (r2 = 0.92), muscle density (r2 = 0.75), and L1 
trabecular density (r2 = 0.72) all demonstrated a clear linear 
trend. The main motivation for our study was to see if a 
“correction” for the effect of IV contrast would allow us to 
combine unenhanced and enhanced CT scans for perform-
ing large population-based predictive studies using these 
CT biomarkers of body composition. Such corrections 
might also be useful at the individual patient level if these 
opportunistic measures are to be used prospectively for risk 

Fig. 5   Case examples of dis-
cordant/outlier results between 
pre- and post-contrast. Pre-
contrast (a) and post-contrast 
(b) example of the muscle tool 
shows obvious segmentation 
errors. Pre-contrast (c) and post-
contrast (d) example of the fat 
tool shows expected segmenta-
tion, but the amount of visceral 
fat has shifted at the anatomic 
L1 level relative to other 
structures, presumably related 
to respiratory differences. IV 
contrast also impacts visceral fat 
segmentation more than subcu-
taneous fat. Pre-contrast (e) and 
post-contrast (f) example of the 
L1 trabecular bone tool shows 
pre-contrast placement of the 
ROI near the endplate, includ-
ing cortical bone that resulted 
in a 46.4 HU increase over the 
properly placed post-contrast 
trabecular ROI
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assessment in the future. However, visual confirmation of 
correct automated segmentation, including level, would be 
an important quality assurance step for individual patient 
care.

The fact that such a straightforward linear correction is 
sufficient to account for the effect of IV contrast on these 
automated measures was somewhat serendipitous, both for 
the area-based and HU-based assessments. For the area-
based measures of muscle and fat, one might expect that 
no correction at all is needed, since the underlying amount 
of tissue being assessed is of course unchanged. Indeed, 
the measured difference in L3-level muscle area was only 
on the order of 2% on average. However, the mean post-
contrast decrease in L1-level visceral fat was substantially 
larger, at about 25%, presumably due to the impact of con-
trast enhancement of surrounding organs and vessels at the 
fat interface, affecting the regions of fat thresholding. Not 
surprisingly, the effect on subcutaneous fat area was less 
(< 10%), but still much greater than the effect on muscle 
area. Nonetheless, the changes in visceral fat, subcutane-
ous fat, and V/S ratio were all linear in nature for the study 
cohort. Measurable changes in post-contrast attenuation val-
ues of the vascularized structures of muscle and trabecular 
bone (in HU) were more expected, but the reasonably good 
linear correlation was not. In addition, the lack of need for 
a non-zero intercept for L1 trabecular HU was unexpected. 
The increased muscle enhancement associated with higher 
pre-contrast HU values may reflect more vascularized mus-
cle without fatty atrophy or myosteatosis.

Spatial misregistration due to breath-hold differences 
between the pre- and post-contrast series is another poten-
tial source of variability in biomarker measurement. Rela-
tive motion would be more expected to affect visceral fat 
compared with muscle or bone. This may also help to further 
explain the greater mean differences observed in visceral 
fat measures. Although vertebral bone is the least likely to 
shift due to respiratory changes, the L1 trabecular HU ROI 
is much smaller and more sensitive to position, such as prox-
imity to the vertebral endplate. This may help to explain the 
relative increase in outlier measures for BMD. These two 
issues are visually apparent in the cases shown in Fig. 5.

Although we are not aware of other pre- and post-contrast 
investigations involving automated CT tools, prior studies 
utilizing manual ROI attenuation measurements for assess-
ing post-contrast changes in muscle and trabecular bone have 
been reported. One study assessing the paraspinal and psoas 
muscles on pre- and multiphase post-contrast studies showed 
a significant increase in attenuation after contrast administra-
tion, which was greatest in the delayed (parenchymal) phase 
[10]. Additionally, this manual study showed a significant 
increase in L4 trabecular bone. Another study using manual 
ROI placement on pre- and post-contrast CT images showed 
an average increase in L1 trabecular attenuation of 11.2 HU 

after contrast, but with relatively wide variability [11]. Yet 
another manual ROI study showed the effect of contrast on 
L1 trabecular bone attenuation on arterial and portal venous 
phases, and noted that this could affect BMD assessment 
[12].

The need for validating these fully automated biometric 
tools on post-contrast CT scans is clear, based on the initial 
validation [3, 5, 6] and predictive works [7–9] to date using 
only unenhanced CT scans. In conjunction with automated 
CT-based tools for quantifying abdominal aortic calcification 
and liver fat [2, 4], the automated muscle, fat, and bone tools 
evaluated herein have contributed to studies demonstrating 
their predictive value for future osteoporotic fractures, car-
diovascular events and mortality, and metabolic syndrome 
[1, 7–9]. All of the biomarker data for these previous studies, 
however, were collected from non-contrast CT examinations. 
The ability to apply these tools to population-based studies 
involving a mix of unenhanced and contrast-enhanced CT 
scans would greatly expand their opportunistic potential. 
Ongoing work is focusing on the effects of IV contrast on the 
automated abdominal aortic calcium and liver HU tools. For 
quantifying aortic calcium on post-contrast CT, the impact 
of the immediately adjacent blood pool enhancement pre-
sents additional technical challenges. For quantifying liver 
fat content, preliminary investigation suggests that a simple 
linear correction may be insufficient.

To be effectively utilized at the patient level, such as for 
prospective opportunistic risk stratification on CT scans 
performed for other clinical indications, visual assessment 
and confirmation of appropriate automated segmentations 
will be indicated. This quality assurance step would apply 
to both unenhanced and contrast-enhanced CT scans. For 
post-contrast correction, population averages assuming lin-
ear correlation are meaningless for individualized care if the 
automated measurement represents a flawed outlier. As such, 
a dashboard display of automatically segmented measures 
of body composition should be available to the radiologist 
at the time of prospective interpretation.

We acknowledge limitations to our study. The patient 
cohort was solely comprised of healthy outpatient adults. 
Although this represents an appropriate well-controlled 
group for initial assessment of IV contrast effects, our find-
ings should eventually be extended to a broader scope of 
patients, including symptomatic and diseased cohorts. We 
utilized a more delayed parenchymal post-contrast phase, 
and not the standard portal venous phase. While this ensured 
ample time to measure the full effect of IV contrast, and 
avoided situations where the portal venous phase is obtained 
too early, it may impact generalizability. A minority of cases 
were scanned at non-120 kV settings; however, we felt this 
was insufficient for formal subanalysis, and the overall cor-
relations were deemed to be adequate. Finally, the automated 
CT-based algorithms failed in a minority of cases, and 
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outliers related to segmentation error were observed in other 
cases. Segmentation errors related to the BMD tool were 
most frequent. Over time, continued refinements to these 
AI algorithms are expected to further reduce the error rate. 
This along with further testing could allow for conversion 
of contrasted biomarkers to their non-contrast equivalent.

In conclusion, we have shown that fully automated CT-
based quantitative tissue measures of bone, muscle, and fat 
at contrast-enhanced abdominal CT correlate with non-con-
trast equivalents using simple linear relationships. This find-
ing will facilitate the evaluation of mixed CT cohorts involv-
ing larger patient populations and could greatly expand the 
potential for both population-based and individualized 
opportunistic screening.
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