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An accurate and generally applicable method for estimating aqueous solubilities for a diverse set of 1297
organic compounds based on multilinear regression and artificial neural network modeling was developed.
Molecular connectivity, shape, and atom-type electrotopological state (E-state) indices were used as structural
parameters. The data set was divided into a training set of 884 compounds and a randomly chosen test set
of 413 compounds. The structural parameters in a 30-12-1 artificial neural network included 24 atom-
type E-state indices and six other topological indices, and for the test set, a predictiver2 ) 0.92 ands )
0.60 were achieved. With the same parameters the statistics in the multilinear regression werer2 ) 0.88 and
s ) 0.71, respectively.

INTRODUCTION

The aqueous solubility of drug compounds is one of the
most important factors in determining its biological activity.
In many cases drugs that show a good activity when
administered parenterally maybe totally inactive when given
orally. In such cases poor oral activity is often due to the
fact that a sufficient amount of drug to desired response is
not reached in the site of action. Hence an insufficient
aqueous solubility is likely to hamper bioavailability of the
drugs. In recent years high-throughput screening, where
collections of thousands of compounds are screened with
the intention of finding relevant biological activity, has
proven valuable in finding new lead compounds.1 It has been
noticed that the synthesis of combinatorial libraries tends to
result in compounds with higher molecular weights and
higher lipophilicity, and presumably lower aqueous solubility,
than with conventional synthetic strategies. For this reason
computational screens have been suggested and used to select
sublibraries with relevant physicochemical properties to the
range of known values, such as lipophilicity and solubility,
of the orally active drugs.2-5 Hence there is a strong interest
in fast, reliable, and generally applicable structure-based
methods for prediction of aqueous solubility of new drugs
before a promising drug candidate has even been synthesized.

Several approaches have been developed for the prediction
of aqueous solubility based on nonexperimental structural
parameters. These can be divided in substructure (group
contribution) approaches6-8 and in approaches where pa-
rameters are calculated directly from molecular structure,9-18

such as topological indices, molecular volume, molecular
surface area, etc. These methods employ multilinear regres-
sion or neural network modeling and varying ways of
structural parametrization. However, currently used methods
were developed from relatively small training sets (n ) 200-
300). One problem with small training sets is that they might

not be representative but compiled from structural analogues.
The use of a small and limited set of compounds in the
training sets leads to models of closed systems, and their
general applicability is questionable. This is clearly demon-
strated by the fact that only three of above-mentioned
methods6,7,17 have been applied to the test set designed by
Yalkowsky.19 This test set contains 21 drug molecules and
environmentally interesting compounds, like pesticides, with
complex chemical structures.

In our earlier studies we have shown that aqueous
solubilies,17 log S, and partition coefficients,20 log P, for drug
compounds can be estimated with a reasonable accuracy on
the basis of parameters derived from molecular topology.
In this study we propose a method for estimating logSvalues
with the same parameters but for a much larger and diverse
set of organic compounds.

DATA SETS

The applicability and accuracy of a logS estimation
method are strongly affected by the size and quality of the
training set used. Experimental aqueous solubility values for
the compounds used in this study were obtained from the
AQUASOL dATAbASE of the University of Arizona21 and
SCR’s PHYSPROP Database.22 A set of 1297 organic
compounds was extracted from these databases and was
divided into a training set of 884 compounds and a randomly
chosen test set of 413 compounds. The aqueous solubility
values in 20-25 °C expressed as logS, whereS is solubility
in mol/L, were used. The logS values of the training set
ranged from-11.62 to+1.58 with a mean of-2.70 and
standard deviation of 2.01. For the testing set, the smallest
log S value was-10.41 and the largest+1.13. The mean
and standard deviation were-2.77 and 2.07, respectively.

METHODS

Three different types of topological indices introduced by
Kier and Hall23-26 were used as structural parameters and
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were calculated using the Molconn-Z (Hall Associated
Consulting, Quincy, MA) software with structure input for
each analyzed compound using the SMILES line notation
code. Simple and valence molecular connectivity indices up
to third-order path (1-3ø and 1-3øν), shape indices (1-3κ,
1-3κR), flexibility index (φ), the number of hydrogen-bonding
donors (HBD) and acceptors (HBA), and 39 atom-type
electrotopological state (E-state) indices were calculated.
Cross-correlation analysis showed that pairwise correlations
werer2 < 0.80; hence, all these 55 parameters contain useful
information and could be used in regression analysis.

The multilinear regression (MLR) analysis was performed
with SPSS software (v.8.0, SPSS Inc., Chicago, IL) running
on a Pentium PC. The quality criteria on the fit in MLR
analysis were squared correlation coefficient,r2, standard
deviation, s, and Fischer significant value,F, when all
parameters in the model were significant at the 95%
confidential level.

The artificial neural network simulations were carried out
using NeuDesk software (v 2.20, Neural Computational
sciences, U.K.). A three-layered, fully connected neural
network was trained by the standard back-propagation
learning algorithm with a logisticf(x) ) 1/(1 + e-x)
activation function for both hidden and output nodes. The
same set of parameters as in the MLR equation was tested
in artificial neural networks (ANNs) with one output neuron,
log S.

Before the training was started, the input and output values
were scaled between 0.1 and 0.9, and adjustable weights
between neurons were given random values of between-0.5
and 0.5. The learning rate and momentum parameter were
set at 0.1 and 0.9, respectively. The training end point was
determined on the basis of the average training error (E),
which is the mean-square error between the target and actual
output. The optimal training end point was searched for
overtraining the network. It has been accepted that the ratio,
F, of the number of input parameters to the number of
weights should be greater than 2.0, although cross-validation
allows for the use of smaller values.27,28Hence networks with
8, 10, 12, and 14 neurons in the hidden layer were studied.
The network architecture and the training end point giving
the highest coefficient of determination,r2

pred, and the lowest
standard errors for the predictions of the test set were then
used. To avoid chance effects, the predictions were repeated
10 times with different random starting weights in the
network, and the averaged logS values were calculated.

RESULTS AND DISCUSSION

In this study the aqueous solubility values of a diverse set
of 1297 organic compounds were compiled from two highly
evaluated databases. The data set was divided into a training
set of 884 compounds for developing the MLR and ANN
models and a randomly chosen test set of 413 compounds
(test set 1) for evaluating the predictive ability of the models.
Another test set of 21 compounds (test set 2) was also used
and allowed comparison of the predictions with earlier
results.

Myrdal et al.29 pointed out that the experimental solubility
values can differ by∼1.0 log unit, especially for compounds
with a very low logSvalue. Hence, for the training sets that
are compiled from relatively complex chemical structures,
standard deviation,s, will be not lower than∼0.5 log unit.

Stepwise and backward methods were employed in the
regression analysis, and the following equation containing
30 parameters was calculated for the training set

In this equation,n is the number of compounds used in the
fit, F is the overallF-statistics for the addition of each
successive term,r2

cv is squared correlation coefficient of
prediction in leave-one-out cross-validation, andai and Si

are the regression coefficients and the corresponding struc-
tural parameters. The regression coefficients in the equation
are indicated in Table 1 with thet-scores of the significant
parameters, and an example calculation of logS values by
regression coefficients is given in Table 2. In the leave-one-
out prediction of the MLR model, standard deviation of
prediction,scv ) 0.71, is only 0.04 unit higher than for the
fitting model, s ) 0.67. Such a small increase indicates a
robustness of the model. Multilinear regression was also able
to predict the logSvalues for 413 compounds in the test set
with a coefficient of determination ofr2

pred ) 0.88 and a
standard deviation of predictions ) 0.71, which are in a
good agreement with the results for the training set.

Table 1. Structural Parameters in the Multilinear Regression Model

(A) Topological Indices

symbol explanation contributiont-score
1ø path 1 simple connectivity index -0.438 7.877
1øν path 1 valence connectivity index +0.117 2.489
φ flexibility index -0.052 2.629
HBA the number of H-bond acceptors -0.475 6.259
Ar aromaticity indicator -0.439 4.690
Alif a indicator for aliphatic hydrocarbons -1.960 14.008

(B) Atom-type Electrotopological State Indicesb

symbol group frequencyc contributon t-score

SsCH3 -CH3 797 -0.174 8.208
SssCH2 -CH2- 699 -0.205 6.954
SdsCH dCH- 188 -0.076 2.542
SaaCH aCHa 771 -0.080 4.749
SdssC dC< 579 0.115 2.743
SaasC asCa 743 -0.078 2.486
SaaaC aaCa 195 -0.319 10.793
SsNH2 -NH2 197 0.117 6.779
SssNH -NH- 223 0.301 9.257
SdsN dN- 37 0.125 3.701
SaaN aNa 141 0.173 8.094
SsssN >N- 189 0.795 16.273
SddsN -N, 44 0.656 4.664
SssssNp >N,+ 2 4.691 5.657
SsOH -OH 400 0.087 9.645
SdO dO 645 0.048 5.492
SssO -O- 307 0.160 10.289
SsF -F 43 -0.020 4.801
SsSH -SH 11 -0.315 4.925
SdS dS 35 -0.180 4.475
SdssS >Sd 3 -0.916 1.997
SsCl -Cl 269 -0.135 13.504
SsBr -Br 46 -0.336 10.711
SsI -I 19 -0.619 9.561

a Indicator variable for compounds that contain only aliphatic C and
H. b According to Kier and Hall.25 c The number of compounds for
which atom group is present.

log S) ∑(aiSi) - 1.350 (1)

n ) 884, r2 ) 0.89, s ) 0.67, F ) 227.31,
r2

cv ) 0.88, scv ) 0.71
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It was possible that there were some nonlinear depend-
encies between MLR optimized parameters and logSvalues.
Hence, an application of nonlinear methods of data analysis
could provide a better modeling of data. The back-propaga-
tion artificial neural networks were used to detect the
presence of nonlinear dependencies in the analyzed data set
as described in the next section.

The same set of the structural parameters as in the
regression equation was used as inputs in neural network
modeling. Several assays were made to find the optimal
training end point and network architecture. The best
performance of the network was achieved with 12 neurons
in the hidden layer with the value ofF ) 2.30. The optimal
training end point,E ) 0.032, required≈2300 training
epochs when an ANN architecture of 30-12-1 was used.
The neural network was able to estimate, with a reasonable
degree of accuracy, most of the aqueous solubilities of the

training set,r2 ) 0.94,s ) 0.47, andn ) 884 and the test
set r2

pred ) 0.92,s ) 0.60, andn ) 413, respectively.
Statistics for the estimated aqueous solubilities of the

organic compounds in the training set and test sets are
presented in Table 3. The calculated and experimental
aqueous solubilities of the training set and test sets are plotted
in Figures 1-3. The list of all compounds and experimental
and estimated logS values is available as Supporting
Information.

The general applicability for the prediction ability of
aqueous solubility was tested by the test set designed by
Yalkowsky.19 This test set is compiled of 21 commonly used
compounds of pharmaceutical and environmental interest.
The results of the predictions for this test set are presented
in Table 4. The present multilinear regression and neural
network models gave standard deviationss ) 0.88 and 0.63.
In our previous study17 the results by neural network weres
) 1.25 for all 21 compounds ands ) 0.55 for a subset of
13 pharmaceuticals. Hence a significant improvement was
achieved, and the predictions were better than those made
by Klopman6 and Kühne.7 An interesting point of view is
that Kühne used melting points in their group contribution
approach and got a better fit for the training set of 694

Table 2. E-State Indices Calculated for Benzocaine along with the
Atom-type E-State Indicesa and an Example of Calculating logS
Valueb by Regression Coefficients

atom ID atom-type symbol E-state index

1 aCHa aaCH 1.646
2 aCHa aaCH 1.673
3 aCa aasC 0.642
4 -NH2 sNH2 5.449
5 aCHa aaCH 1.673
6 aCHa aaCH 1.646
7 aCa aasC 0.533
8 dC < dssC -0.308
9 dO dO 11.093

10 -O- ssO 4.788
11 -CH2- ssCH2 0.392
12 -CH3 sCH3 1.773

atom-type atom-type E-state value

SsCH3 1.773
SssCH2 0.392
SaaCH 6.638
SdssC -0.308
SaasC 0.533
SsNH2 5.449
SdO 11.093
SssO 4.788

a According to Hall and Kier.24 b log S ) -0.4381ø + 0.1171øν -
0.052φ - 0.475HBA - 0.438Ar - 1.96Alif - 0.174SsCH3 -
0.205SssCH2- 0.08SaaCH+ 0.115SdssC- 0.078SaasC+ 0.117Ss-
NH2 + 0.048SdO+ 0.160SssO- 1.35 ) -1.85 (estimated),-2.32
(experimental),-0.47 (error).

Table 3. Comparison of Predictive Ability of Multilinear
Regression and Neural Network Models Using the Same Set of
Parameters

training set test set 1 test set 2

model r2 s n r2pred s n r2pred s n

MLRa 0.89 0.67 884 0.88 0.71 413 0.83 0.88 21
ANNa 0.94 0.47 884 0.92 0.60 413 0.91 0.63 21
ANNb 0.90 0.46 160 0.86 0.53 51 0.68 1.25 21

a This study.b Our previous study.17

Figure 1. Correlation of calculated logSvs observed logSvalues
for the training set by neural network.

Figure 2. Correlation of predicted logSvs observed logSvalues
for the test set 1 by neural network.
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compounds than Klopman using only group contributors for
a training set of 483 compounds. However, Klopman’s model
(s ) 0.86 andn ) 19) predicted better the solubilities in the
test set of 21 compounds than Ku¨hne’s model (s ) 1.06 and
n ) 19). Hence we could also ask if the correction term for
solid compound, melting point, is really necessary for group
contribution approaches.

An accurate and generally applicable method for estimat-
ing aqueous solubilities for a diverse set of 1297 organic
compounds based on multilinear regression and artificial
neural network modeling was developed. Topological indices
cannot account for three-dimensional and conformational
effects. Topological indices, however, are attractive because
they can be calculated easily and rapidly and are error-free.
The results of this study show that a practical solubility-
predicting model can be constructed for a large and structur-
ally diverse set of organic compounds with both multilinear
regression and neural network modeling.
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