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Estimation of Aqueous Solubility for a Diverse Set of Organic Compounds Based on
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An accurate and generally applicable method for estimating aqueous solubilities for a diverse set of 1297
organic compounds based on multilinear regression and artificial neural network modeling was developed.
Molecular connectivity, shape, and atom-type electrotopological state (E-state) indices were used as structural
parameters. The data set was divided into a training set of 884 compounds and a randomly chosen test set
of 413 compounds. The structural parameters in a13-1 artificial neural network included 24 atom-

type E-state indices and six other topological indices, and for the test set, a pretictiv@.92 ands =

0.60 were achieved. With the same parameters the statistics in the multilinear regressiot=w@i@8 and

s = 0.71, respectively.

INTRODUCTION not be representative but compiled from structural analogues.
The use of a small and limited set of compounds in the
training sets leads to models of closed systems, and their
general applicability is questionable. This is clearly demon-
strated by the fact that only three of above-mentioned
method&7:1” have been applied to the test set designed by
Yalkowsky1® This test set contains 21 drug molecules and
environmentally interesting compounds, like pesticides, with
complex chemical structures.

In our earlier studies we have shown that agueous
solubilies!’ log S, and partition coefficient?log P, for drug
compounds can be estimated with a reasonable accuracy on
the basis of parameters derived from molecular topology.
In this study we propose a method for estimatingfoglues
with the same parameters but for a much larger and diverse
set of organic compounds.

The aqueous solubility of drug compounds is one of the
most important factors in determining its biological activity.
In many cases drugs that show a good activity when
administered parenterally maybe totally inactive when given
orally. In such cases poor oral activity is often due to the
fact that a sufficient amount of drug to desired response is
not reached in the site of action. Hence an insufficient
aqueous solubility is likely to hamper bioavailability of the
drugs. In recent years high-throughput screening, where
collections of thousands of compounds are screened with
the intention of finding relevant biological activity, has
proven valuable in finding new lead compounidshas been
noticed that the synthesis of combinatorial libraries tends to
result in compounds with higher molecular weights and
higher lipophilicity, and presumably lower aqueous solubility,
than with conventional synthetic strategies. For this reason
computational screens have been suggested and used to select DATA SETS
sublibraries with relevant physicochemical properties to the  The applicability and accuracy of a lo§ estimation
range of known values, such as lipophilicity and solubility, method are strongly affected by the size and quality of the
of the orally active drug$:® Hence there is a strong interest  training set used. Experimental aqueous solubility values for
in fast, reliable, and generally applicable structure-basedthe compounds used in this study were obtained from the
methods for prediction of agueous solubility of new drugs AQUASOL dATAbASE of the University of Arizon# and
before a promising drug candidate has even been synthesizedSCR’s PHYSPROP Databa¥% A set of 1297 organic

Several approaches have been developed for the predictiotompounds was extracted from these databases and was
of aqueous solubility based on nonexperimental structural divided into a training set of 884 compounds and a randomly
parameters. These can be divided in substructure (groupchosen test set of 413 compounds. The aqueous solubility
contribution) approach&s® and in approaches where pa- values in 26-25°C expressed as log whereSis solubility
rameters are calculated directly from molecular structufe, in mol/L, were used. The lo values of the training set
such as topological indices, molecular volume, molecular ranged from—11.62 to+1.58 with a mean of-2.70 and
surface area, etc. These methods employ multilinear regresstandard deviation of 2.01. For the testing set, the smallest
sion or neural network modeling and varying ways of log S value was—10.41 and the largest1.13. The mean
structural parametrization. However, currently used methodsand standard deviation were2.77 and 2.07, respectively.
were developed from relatively small training sets<( 200—

300). One problem with small training sets is that they might METHODS
tTel: 358 9 19159170. FAX: 358 9 19159556. E-mail: Three different types of topological indices introduced by
jarmo.huuskonen@helsinki.fi. Kier and Half*-2¢ were used as structural parameters and
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were calculated using the Molconn-Z (Hall Associated Table 1. Structural Parameters in the Multilinear Regression Model
Consulting, Quincy, MA) software with structure input for

. . 8 (A) Topological Indices
each analyzed compound using the SMILES line notation

. s symbol explanation contributiont-score

code. Simple and valence molecular connectivity indices up — - Yo 0438 77
ird- 3 1-3, indi 143 V4 path 1 simple connectivity index —0. .

293 thll’(zl Ol’(gel‘l’ p_agh Cr aﬂd X g)’ Sh?ﬁedmdlcesbt ’é’. by path 1 valence connectivity index ~ +0.117 2.489

ko), flexibility index (¢), the number of hydrogen-bonding flexibility index —0.052 2 629

donors (HBD) and acceptors (HBA), and 39 atom-type HBA  the number of H-bond acceptors ~ —0.475 6.259

electrotopological state (E-state) indices were calculated. Ar aromaticity indicator —0.439 4.690

Cross-correlation analysis showed that pairwise correlationsAlif*  indicator for aliphatic hydrocarbons  —1.960  14.008
werer? < 0.80; hence, all these 55 parameters contain useful (B) Atom-type Electrotopological State Indi¢es
information and could be used in regression analysis.

h il 3 e " q symbol group frequen€y  contributon t-score
'I;] e multi m::tar regression (MLR) ana yrs]_ls was performed —o -~ - —chy 297 “o.174 5.208
with SPSS software (v.8.0, SPSS Inc., Chicago, IL) running  ssscH2 ~ —CH,— 699 ~0.205 6.954
on a Pentium PC. The quality criteria on the fit in MLR  SdsCH =CH-— 188 —-0.076 2.542
analysis were squared correlation coefficient, standard SaaCH aCHa 771 —0.080 4.749
deviation, s, and Fischer significant values, when all SdssC  =C< 579 0.115 2.743
; S SaasC asCa 743 —0.078 2.486
parameters in the model were significant at the 95% g ,5c aaCa 195 —0319 10.793
confidential level. SsNH2 —NH; 197 0.117 6.779
The artificial neural network simulations were carried out ~ SssNH —NH- 223 0.301 9.257
using NeuDesk software (v 2.20, Neural Computational SdsN =N- 37 0.125 3.701
. SaaN aNa 141 0.173 8.094
sciences, U.K.). A three-layered, fully connected neural gccon ~N— 189 0.795 16.973
network was trained by the standard back-propagation sddsN —N< 44 0.656 4.664
learning algorithm with a logisticf(x) = 1/(1 + € SssssNp ~ >N<+ 2 4.691 5.657

activation function for both hidden and output nodes. The gzg“ —OH ggg 8-8% gggg

same set of parameters as in the MLR equation was tested o o o 307 0.160 10,289

in artificial neural networks (ANNSs) with one output neuron,  ssf _F 43 ~0.020 4.801

log S SsSH —SH 11 —0.315 4.925
Before the training was started, the input and output values ggs S TS 35 :8-3?2 ‘1‘-333

were scaled between 0.1 and 0.9, and adjustable weights ocoy g 269 o13e 13504

between neurons were given random values of betwdkrh SsBr —Br 46 ~0.336 10711

and 0.5. The learning rate and momentum parameter were Ssl -l 19 —-0.619 9.561

set at 0.1 and 0.9, respectively. The training end point was _ _ _ o

determined on the basis of the average training ey ( 2 Indicator variable for compounds that contain only aliphatic C and

b According to Kier and Halt® ¢The number of compounds for

which is the mean-square error between the target and actua\'l;'vhich atom group is present.

output. The optimal training end point was searched for
overtraining the network. It has been accepted that the ratio,
p, of the number of input parameters to the number of
weights should be greater than 2.0, although cross-validation
allows for the use of smaller valugs*®Hence networks with
8, 10, 12, and 14 neurons in the hidden layer were studied.
The network architecture and the training end point giving
the highest coefficient of determinatiaisreq and the lowest )
standard erros for the predictions of the test set were then N=884, r°=0.89, s=0.67, F=227.31,
used. To avoid chance effects, the predictions were repeated rZCV =0.88, s,=0.71
10 times with different random starting weights in the
network, and the averaged I&yvalues were calculated. In this equationn is the number of compounds used in the
fit, F is the overallF-statistics for the addition of each
RESULTS AND DISCUSSION successive termi?, is squared correlation coefficient of
In this study the aqueous solubility values of a diverse set prediction in leave-one-out cross-validation, amdand S
of 1297 organic compounds were compiled from two highly are the regression coefficients and the corresponding struc-
evaluated databases. The data set was divided into a trainingural parameters. The regression coefficients in the equation
set of 884 compounds for developing the MLR and ANN are indicated in Table 1 with thiescores of the significant
models and a randomly chosen test set of 413 compoundsparameters, and an example calculation of $o¢plues by
(test set 1) for evaluating the predictive ability of the models. regression coefficients is given in Table 2. In the leave-one-
Another test set of 21 compounds (test set 2) was also usedut prediction of the MLR model, standard deviation of
and allowed comparison of the predictions with earlier prediction,s;, = 0.71, is only 0.04 unit higher than for the
results. fitting model, s = 0.67. Such a small increase indicates a
Myrdal et al?® pointed out that the experimental solubility robustness of the model. Multilinear regression was also able
values can differ by~1.0 log unit, especially for compounds to predict the logSvalues for 413 compounds in the test set
with a very low logSvalue. Hence, for the training sets that with a coefficient of determination af?,q = 0.88 and a
are compiled from relatively complex chemical structures, standard deviation of predictios= 0.71, which are in a
standard deviatiors, will be not lower than~0.5 log unit. good agreement with the results for the training set.

Stepwise and backward methods were employed in the
regression analysis, and the following equation containing
30 parameters was calculated for the training set

log S= Z(aiS) —1.350 (1)
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Table 2. E-State Indices Calculated for Benzocaine along with the
Atom-type E-State Indicésand an Example of Calculating Idg

Value® by Regression Coefficients

% %-' 3
atom ID atom-type symbol E-state index
1 aCHa aaCH 1.646
2 aCHa aaCH 1.673
3 aCa aasC 0.642
4 —NH sNH2 5.449
5 aCHa aaCH 1.673
6 aCHa aaCH 1.646
7 aCa aasC 0.533
8 =C < dssC —0.308
9 =0 do 11.093
10 —0— ssO 4.788
11 —CH,— ssCH2 0.392
12 —CHs sCH3 1.773
atom-type atom-type E-state value
SsCh 1.773
SssCH2 0.392
SaaCH 6.638
SdssC —0.308
SaasC 0.533
SsNH2 5.449
SdoO 11.093
SssO 4.788

2 According to Hall and Kie?* log S= —0.438y + 0.117%y" —
0.052» — 0.475HBA — 0.438Ar — 1.96Alif — 0.174SsCH —
0.205SssCH2- 0.08SaaCHt 0.115SdssC- 0.078SaasG- 0.117Ss-
NH; + 0.048SdO+ 0.160SssO- 1.35= —1.85 (estimated);-2.32
(experimental)—0.47 (error).

Table 3. Comparison of Predictive Ability of Multilinear
Regression and Neural Network Models Using the Same Set of
Parameters

model

training set

testset 1

test set 2

r2 s N Pored

s N Ppea S n

MLR?
ANN?
ANNP

0.89 0.67 884 0.88
0.94 0.47 884 0.92
0.90 0.46 160 0.86

0.71 413 0.83 0.88 21
0.60 413 091 063 21
053 51 068 125 21

aThis study.P Our previous study’
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Figure 1. Correlation of calculated lo§vs observed logvalues
for the training set by neural network.
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Figure 2. Correlation of predicted lo§vs observed lo@ values
for the test set 1 by neural network.

training setr? = 0.94,s = 0.47, andn = 884 and the test
setrZyeq = 0.92,5 = 0.60, andn = 413, respectively.
Statistics for the estimated aqueous solubilities of the
organic compounds in the training set and test sets are
presented in Table 3. The calculated and experimental
aqueous solubilities of the training set and test sets are plotted

It was possible that there were some nonlinear depend-in Figures 1-3. The list of all compounds and experimental
encies between MLR optimized parameters andduoglues.

Hence, an application of nonlinear methods of data analysis|nformation.

could provide a better modeling of data. The back-propaga-
tion artificial neural networks were used to detect the
presence of nonlinear dependencies in the analyzed data S@alkowsky

as described in the next section.

The same set of the structural parameters as in theThe results of the predictions for this test set are presented
regression equation was used as inputs in neural networkin Table 4. The present multilinear regression and neural
modeling. Several assays were made to find the optimal network models gave standard deviatisnis 0.88 and 0.63.
training end point and network architecture. The best In our previous study the results by neural network wese
performance of the network was achieved with 12 neurons = 1.25 for all 21 compounds argl= 0.55 for a subset of
in the hidden layer with the value pf= 2.30. The optimal
training end point,E = 0.032, required~2300 training
epochs when an ANN architecture of-302—1 was used.
The neural network was able to estimate, with a reasonablethat Kihne used melting points in their group contribution
degree of accuracy, most of the aqueous solubilities of theapproach and got a better fit for the training set of 694

and estimated logS values is available as Supporting

The general applicability for the prediction ability of
aqueous solubility was tested by the test set designed by
19 This test set is compiled of 21 commonly used
compounds of pharmaceutical and environmental interest.

13 pharmaceuticals. Hence a significant improvement was
achieved, and the predictions were better than those made
by Klopmart and Kthne? An interesting point of view is
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Table 4. Observed and Predicted Aqueous Solubilities for the Test Set 2

no. compound [0Gons ANN MLR Klopmanf Kuhne
1 2,2',4,5,5-PCB —7.89 -7.21 —7.40 —7.90 —7.47
2 benzocaine -2.32 -1.79 -1.85 -1.71 na
3 aspirin —1.72 —1.69 —-1.74 —1.52 —1.93
4 theophylline —1.39 -1.71 —0.78 —1.07 0.54
5 antipyriné 0.39 -1.29 —-1.20 —-1.90
6 atrazine —3.85 —3.51 —2.18 —3.05 —3.95
7 phenobarbital —2.32 —2.97 —2.88 —2.08 —2.41
8 diuron —3.80 —2.86 —3.20 —2.85 —3.38
9 nitrofurantoin —3.38 —3.42 —3.03 —2.19 —2.62
10 phenytoin —3.90 —3.40 —3.48 —3.47 —5.25
11 diazeparh —3.76 —4.05 —4.26 —4.51
12 testosterone —4.09 —3.98 —4.17 —-5.17 —4.62
13 lindane —4.64 —-4.71 —5.34 —4.88 —5.08
14 parathion —4.66 —4.13 —3.98 —3.94 —4.59
15 diazinon —3.64 —4.01 —4.10 —5.29 —4.98
16 phenolphthalein —2.90 —-3.99 —4.05 —4.48 —4.61
17 malathion —3.37 —3.24 —3.63 —2.94 —3.48
18 chlorpyriphos —5.49 —5.61 —5.46 —5.77 —3.75
19 prostaglandin B2 —2.47 -3.29 —4.35 —4.21 na
20 4,4-DDT —8.08 —7.67 —7.82 —8.00 —7.75
21 chlordane —6.86 —7.29 —8.35 —7.55 —6.51
ored 0.91 0.83 0.82 0.75
S 0.63 0.88 0.86 1.06
n 21 21 19 19

aQutliers in Klopman’s modeP Predicted values not given.
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